Theoretical and Applied Climatology

, Volume 51, Issue 1–2, pp 25–38 | Cite as

A 1-D atmospheric energy balance model developed for ocean modelling

  • D. Chen
  • R. Gerdes
  • G. Lohmann


We present a simple, deterministic energy balance model. The model is designed to represent the atmospheric component of the coupled atmosphere-ocean system. It is a one dimensional, global model with time and space resolutions of one year and 10° of latitude respectively. The model predicts the surface air temperature and estimates the surface freshwater flux diagnostically. The coupling between the atmospheric model and an ocean model is accomplished by heat and freshwater fluxes at their interface. The heat flux is calculated according to the difference in the surface air temperature and ocean surface temperature, while the freshwater flux is estimated from the latent heat transport in the atmosphere by a diagnostic equation. Two parameterizations for the latent heat transport are proposed, which distinguishes the two versions of the model.

Before proceeding with interactive runs, we study the behaviour of the model in a decoupled mode. Some experiments with initial conditions altered and external forcings changed arė carried out to investigate the sensitivity and stability of the model. In particular, the influence of the ice-albedo feedback on model solutions is examined. The results of these experiments may be helpful both in understanding the characteristics of the model and in interpreting results when the model is coupled to an OGCM.


Heat Flux Ocean Model Atmospheric Model Atmospheric Component Freshwater Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the earth.Tellus 21, 611–619.Google Scholar
  2. Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations.Nature 323, 301–304.Google Scholar
  3. Carissimo, B. C., Oort, A. H., Vonder Haar, T. H., 1985: Estimating the meridional energy transports in the atmosphere and ocean.J. Phys. Oceanogr. 15, 82–91.Google Scholar
  4. Covey, C., 1988: Atmospheric and oceanic heat transport: simulations versus observations.Climatic Change 13, 149–159.Google Scholar
  5. Dickinson, R. E., 1986: How will climate change? In: Bolin, B., Doos, B. R., Jaeger, J., Warrick, R. A. (eds.)The Greenhouse Effect, Climate Change and Ecosystems. SCOPE Rep., 29, pp. 206–270.Google Scholar
  6. Ghil, M., 1976: Climate stability for a Sellers-type model.J. Atmos. Sci. 33, 3–20.Google Scholar
  7. Haney, R. L., 1971: Surface thermal boundary conditions for ocean circu ation models.J. Phys. Oceanogr. 1, 241–248.Google Scholar
  8. Harvey, L. D. D., 1988: A semianalytic energy balance climate model with explicit sea ice snow physics.J. Climate 1, 1065–1085.Google Scholar
  9. Lal, M., Ramanathan, V., 1984: Effects of moist convection and water vapour radiative processes on climate sensitivity.J. Atmos. Sci. 41, 2238–2249.Google Scholar
  10. Lashof, D. A., 1989: The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric gases and climatic change.Climatic Change 14, 213–242.Google Scholar
  11. Lian, M. S., Cess, R. D., 1977: Energy balance climate models: A reappraisal of ice-albedo feedback.J. Atmos. Sci. 34, 1058–1062.Google Scholar
  12. Manabe, S., Bryan, K., 1985: CO2-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications.J. Geophys. Res. 90, 11,689–11,707.Google Scholar
  13. Manabe, S., Wetherald, R. T., 1980: On the distribution of climate change resulting from an increase in the CO2 content of the atmosphere.J. Atmos. Sci. 37, 99–118.Google Scholar
  14. Mitchell, J. F. B., 1987: Climate sensitivity and past climates; Evidence from numerical studies. In: Berger, W. H., Labeyrie, L. D., (eds.)Abrupt Climatic Change. Hingham, Mass.: D. Reidel, pp. 383–398.Google Scholar
  15. Mitchell, J. F. B., 1989: The “greenhouse” effect and climate change.Rev. Geophys. Space Phys. 27, 115–139.Google Scholar
  16. North, G. R., 1975: Theory of energy-balance climate models.J. Atmos. Sci. 32, 2033–2043.Google Scholar
  17. North, G. R., Cahalan, R. F., Coaley, J. A., 1981: Energy balance climate models.Rev. Geophys. Space Phys. 19, 91–121.Google Scholar
  18. Oort, A. H., Rasmusson, E. M., 1970: On the annual variation of monthly mean meridional circulation.Mon. Wea. Rev. 98, 423–442.Google Scholar
  19. Oort, A. H., Rasmusson, E. M., 1971: Atmospheric circulation statistics, NOAA Prof. Pap. No. 5, Govt. Printing Office, Washington, D. C., 323 pp.Google Scholar
  20. Oort, A. H., 1983: Global atmospheric circulation statistics, 1958–1973. NOAA Prof. Pap. No. 14, Govt. Printing Office, Washington, D. C., 180 pp + microfiches.Google Scholar
  21. Pacanowski, R., Dixon, K., Rosati, A., 1991: The G.F.D.L modulor ocean model user's guide version 1.0, GFDL Ocean Group Techn. Report #2.Google Scholar
  22. Rennick, M. A., 1977: The parameterization of tropospheric lapse rates in terms of surface temperature.J. Atmos. Sci. 34, 854–862.Google Scholar
  23. Roads, J. O., Vallis, G. K., 1984: An energy balance climate model with cloud feedbacks.Tellus 36A, 236–250.Google Scholar
  24. Schneider, S. H., Gal-Chen, T., 1973: Numeric experiments in climate stability.J. Geophys. Res. 78, 6182–6194.Google Scholar
  25. Sellers, W. D., 1969: A global climate model based on the energy balance of the earth-atmosphere system.J. Appl. Meteor. 8, 392–400.Google Scholar
  26. Spelman, M. J., Manabe, S., 1984: Influence of oceanic heat transport upon the sensitivity of a model climate.J. Geophys. Res. 89, 571–586.Google Scholar
  27. Stephens, G. L., Campbell, G.. G., Vonder Haar, T. H., 1981: Earth radiation budgets.J. Geophys. Res. 86, 9739–9760.Google Scholar
  28. Stocker, T. F., Wright, D. G., Mysak, L. A., 1992: A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies.J. Climate 5, 773–797.Google Scholar
  29. Taljaard, J., Loon, H. van, Crutcher, H. L., Jenne, R. L., 1969: Climate of the Upper Air: Southern Hemisphere, Vol. 1, Temperatures, Dewpoints, and Heights at Selected Pressure Levels. NAVAIR 50-1c-55, Chief Naval Operations, Washington D. C., 135 pp.Google Scholar
  30. Washington, W. M., Meehl, G. A., 1983: General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentration.J. Geophys. Res. 88, 6600–6610.Google Scholar
  31. Washington, W. M., Meehl, G. A., 1984: A seasonal cycle experiment on the climatic sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed layer ocean model.J. Geophys. Res. 89, 9475–9503.Google Scholar
  32. Weaver, A. J., Marotzke, J., Cummins, P. F., Sarachik, E. S., 1993: Stability and variability of the thermohaline circulation.J. Phys. Oceanogr. 23, 39–60.Google Scholar
  33. Zhang, S., Greatbatch, R. G., Lin, C. A., 1993: A reexamination of the polar halocline catastrophe and implications for coupled ocean-atmosphere modeling.J. Phys. Oceanogr. 23, 287–299.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • D. Chen
    • 1
  • R. Gerdes
    • 2
  • G. Lohmann
    • 2
  1. 1.Laboratory of Climatology, Department of Physical Geography, Earth Sciences CentreGöteborgs UniversitySweden
  2. 2.Physics II, Alfred-Wegener-Institute for Polar and Marine ResearchBremerhafenGermany

Personalised recommendations