Skip to main content
Log in

A 1-D atmospheric energy balance model developed for ocean modelling

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

We present a simple, deterministic energy balance model. The model is designed to represent the atmospheric component of the coupled atmosphere-ocean system. It is a one dimensional, global model with time and space resolutions of one year and 10° of latitude respectively. The model predicts the surface air temperature and estimates the surface freshwater flux diagnostically. The coupling between the atmospheric model and an ocean model is accomplished by heat and freshwater fluxes at their interface. The heat flux is calculated according to the difference in the surface air temperature and ocean surface temperature, while the freshwater flux is estimated from the latent heat transport in the atmosphere by a diagnostic equation. Two parameterizations for the latent heat transport are proposed, which distinguishes the two versions of the model.

Before proceeding with interactive runs, we study the behaviour of the model in a decoupled mode. Some experiments with initial conditions altered and external forcings changed arė carried out to investigate the sensitivity and stability of the model. In particular, the influence of the ice-albedo feedback on model solutions is examined. The results of these experiments may be helpful both in understanding the characteristics of the model and in interpreting results when the model is coupled to an OGCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the earth.Tellus 21, 611–619.

    Google Scholar 

  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations.Nature 323, 301–304.

    Google Scholar 

  • Carissimo, B. C., Oort, A. H., Vonder Haar, T. H., 1985: Estimating the meridional energy transports in the atmosphere and ocean.J. Phys. Oceanogr. 15, 82–91.

    Google Scholar 

  • Covey, C., 1988: Atmospheric and oceanic heat transport: simulations versus observations.Climatic Change 13, 149–159.

    Google Scholar 

  • Dickinson, R. E., 1986: How will climate change? In: Bolin, B., Doos, B. R., Jaeger, J., Warrick, R. A. (eds.)The Greenhouse Effect, Climate Change and Ecosystems. SCOPE Rep., 29, pp. 206–270.

  • Ghil, M., 1976: Climate stability for a Sellers-type model.J. Atmos. Sci. 33, 3–20.

    Google Scholar 

  • Haney, R. L., 1971: Surface thermal boundary conditions for ocean circu ation models.J. Phys. Oceanogr. 1, 241–248.

    Google Scholar 

  • Harvey, L. D. D., 1988: A semianalytic energy balance climate model with explicit sea ice snow physics.J. Climate 1, 1065–1085.

    Google Scholar 

  • Lal, M., Ramanathan, V., 1984: Effects of moist convection and water vapour radiative processes on climate sensitivity.J. Atmos. Sci. 41, 2238–2249.

    Google Scholar 

  • Lashof, D. A., 1989: The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric gases and climatic change.Climatic Change 14, 213–242.

    Google Scholar 

  • Lian, M. S., Cess, R. D., 1977: Energy balance climate models: A reappraisal of ice-albedo feedback.J. Atmos. Sci. 34, 1058–1062.

    Google Scholar 

  • Manabe, S., Bryan, K., 1985: CO2-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications.J. Geophys. Res. 90, 11,689–11,707.

    Google Scholar 

  • Manabe, S., Wetherald, R. T., 1980: On the distribution of climate change resulting from an increase in the CO2 content of the atmosphere.J. Atmos. Sci. 37, 99–118.

    Google Scholar 

  • Mitchell, J. F. B., 1987: Climate sensitivity and past climates; Evidence from numerical studies. In: Berger, W. H., Labeyrie, L. D., (eds.)Abrupt Climatic Change. Hingham, Mass.: D. Reidel, pp. 383–398.

    Google Scholar 

  • Mitchell, J. F. B., 1989: The “greenhouse” effect and climate change.Rev. Geophys. Space Phys. 27, 115–139.

    Google Scholar 

  • North, G. R., 1975: Theory of energy-balance climate models.J. Atmos. Sci. 32, 2033–2043.

    Google Scholar 

  • North, G. R., Cahalan, R. F., Coaley, J. A., 1981: Energy balance climate models.Rev. Geophys. Space Phys. 19, 91–121.

    Google Scholar 

  • Oort, A. H., Rasmusson, E. M., 1970: On the annual variation of monthly mean meridional circulation.Mon. Wea. Rev. 98, 423–442.

    Google Scholar 

  • Oort, A. H., Rasmusson, E. M., 1971: Atmospheric circulation statistics, NOAA Prof. Pap. No. 5, Govt. Printing Office, Washington, D. C., 323 pp.

    Google Scholar 

  • Oort, A. H., 1983: Global atmospheric circulation statistics, 1958–1973. NOAA Prof. Pap. No. 14, Govt. Printing Office, Washington, D. C., 180 pp + microfiches.

    Google Scholar 

  • Pacanowski, R., Dixon, K., Rosati, A., 1991: The G.F.D.L modulor ocean model user's guide version 1.0, GFDL Ocean Group Techn. Report #2.

  • Rennick, M. A., 1977: The parameterization of tropospheric lapse rates in terms of surface temperature.J. Atmos. Sci. 34, 854–862.

    Google Scholar 

  • Roads, J. O., Vallis, G. K., 1984: An energy balance climate model with cloud feedbacks.Tellus 36A, 236–250.

    Google Scholar 

  • Schneider, S. H., Gal-Chen, T., 1973: Numeric experiments in climate stability.J. Geophys. Res. 78, 6182–6194.

    Google Scholar 

  • Sellers, W. D., 1969: A global climate model based on the energy balance of the earth-atmosphere system.J. Appl. Meteor. 8, 392–400.

    Google Scholar 

  • Spelman, M. J., Manabe, S., 1984: Influence of oceanic heat transport upon the sensitivity of a model climate.J. Geophys. Res. 89, 571–586.

    Google Scholar 

  • Stephens, G. L., Campbell, G.. G., Vonder Haar, T. H., 1981: Earth radiation budgets.J. Geophys. Res. 86, 9739–9760.

    Google Scholar 

  • Stocker, T. F., Wright, D. G., Mysak, L. A., 1992: A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies.J. Climate 5, 773–797.

    Google Scholar 

  • Taljaard, J., Loon, H. van, Crutcher, H. L., Jenne, R. L., 1969: Climate of the Upper Air: Southern Hemisphere, Vol. 1, Temperatures, Dewpoints, and Heights at Selected Pressure Levels. NAVAIR 50-1c-55, Chief Naval Operations, Washington D. C., 135 pp.

    Google Scholar 

  • Washington, W. M., Meehl, G. A., 1983: General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentration.J. Geophys. Res. 88, 6600–6610.

    Google Scholar 

  • Washington, W. M., Meehl, G. A., 1984: A seasonal cycle experiment on the climatic sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed layer ocean model.J. Geophys. Res. 89, 9475–9503.

    Google Scholar 

  • Weaver, A. J., Marotzke, J., Cummins, P. F., Sarachik, E. S., 1993: Stability and variability of the thermohaline circulation.J. Phys. Oceanogr. 23, 39–60.

    Google Scholar 

  • Zhang, S., Greatbatch, R. G., Lin, C. A., 1993: A reexamination of the polar halocline catastrophe and implications for coupled ocean-atmosphere modeling.J. Phys. Oceanogr. 23, 287–299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Gerdes, R. & Lohmann, G. A 1-D atmospheric energy balance model developed for ocean modelling. Theor Appl Climatol 51, 25–38 (1995). https://doi.org/10.1007/BF00865537

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865537

Keywords

Navigation