Theoretical and Applied Climatology

, Volume 52, Issue 1–2, pp 3–17 | Cite as

Observations of flow structure in a small forested valley system

  • E. Mursch-Radlgruber


Features of the mean flow structure in a small valley system in the Rosalian mountain range are discussed using data from a wind measurement network. Tethered balloon measurements during periods of clear sky form the basic dataset for the analysis of drainage winds and temperature inversions. During periods of weak ambient winds the existence of a pure thermally driven nocturnal valley wind system is shown. With strong ambient winds opposing the drainage flow, a reduced drainage height but the same jet maximum as with weak ambient winds is found. On the other hand with “aiding” flow the drainage winds are suppressed and flow reversal can occur. This strong valley flow interaction with the ambient wind indicates considerable dynamic influence on the evolution of drainage winds and on the breakup of temperature inversion structure for small valleys.


Temperature Inversion Drainage Flow Ambient Wind Small Valley Inversion Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barr, S., Orgill, M. M., 1989: Influence of external meteorology on nocturnal valley drainage winds.J. Appl. Meteor. 28, 497–517.Google Scholar
  2. Bernhofer, Ch., McKee, T. B., 1984: Nocturnal mass budget in a well drained windening valley. Proceedings of the 18th Conf. for Alpine Meteor., Obatija.Zbornik meteoroloskih i hidroloskih radova 10, 164–168.Google Scholar
  3. Bernhofer, Ch., Garaus, T., Laube, W., 1988: Standortspezifische Aspekte des Waldsterbens: Ergebnisse von zwei Meßtürmen im Lehrforst Rosalia. In: Führer, E., Neuhuber, F. (Hrsg.)Bericht FIW-Symposium: Waldsterben in Österreich. Theorie, Tendenz, Therapien. 27./28. Okt. Wien, 87–101.Google Scholar
  4. Bernhofer, Ch., Laube, W., 1989: The Rosalian research station (Austrian Research Program against Forest Decline). Commission of the European Communities, Report COST — Workshop Monitoring Air Pollution and Forest Ecosystem Research, 20./21. Feb., Bilthiven, The Netherlands, 80–85.Google Scholar
  5. Bernhofer, Ch., Mursch-Radlgruber, E., Moritz, E., Pöschl, P., Zarpas, A., 1993: Aspekte der Mikrometeorologie von Waldbeständen unter komplexen Standortsbedingungen. Endbericht Forschungsprojekt No 7951-GEO des Fonds zur Förderung wissenschaftlicher Forschung, Wien, pp. 150.Google Scholar
  6. Blumen, W. (ed.), 1990:Atmospheric Processes over Complex Terrain. (Meteorological Monographs Vol. 23, Nr. 45) Bosten, MA: Amer. Meteor. Soc..Google Scholar
  7. Clements, W. E., Archuleta, J. A., 1989: Experimental design of the ASCOT field study.J. Appl. Meteor. 28, 405–413.Google Scholar
  8. Clements, W. E., Archuleta, J. A., Hoard, D. E., 1989: Mean structure of the nocturnal drainage in a deep valley.J. Appl. Meteor. 28, 457–462.Google Scholar
  9. Dobesch, H., Neuwirth, F., 1982: Wind in Niederösterreich, insbesondere im Wiener Becken und im Donautal.Arbeiten aus der Zentralanstalt für Meteorologie und Geodynamik 54, 212.Google Scholar
  10. Freitag, C., 1987: Atmosphärische Grenzschicht in einem Gebirgstal bei Berg- und Talwind. Wiss. Mit. des Meteor. Inst. Univ. München, Nr 60, pp. 197.Google Scholar
  11. McKee, T. B., O'Neal, R. D., 1989: The role of valley geometry and energy budget in the formation of nocturnal valley winds.J. Appl. Meteor. 28, 445–456.Google Scholar
  12. Mursch-Radlgruber, E., 1993: Mobile high frequency minisodar and its potential in boundary layer studies.J. Appl. Physics B,57, 57–63.Google Scholar
  13. Neff, W. D., King, C. W., 1988: Observations of complex terrain flows using acoustic sounders: drainage flow structure and evolution.Bound.-Layer Meteor. 43, 15–41.Google Scholar
  14. Neff, W. D., 1990: Remote sensing of atmospheric complex terrain. In: Blumen W. (ed.)Atmospheric Processes over Complex Terrain. (Meteorological Monographs, AMS, 23, 45), 173–228.Google Scholar
  15. Steinacker, R., 1984: Real-height distribution of a valley and its relation to the valley wind.Contrib. Atmos. Physics 51(1), 64–71.Google Scholar
  16. Vergeiner, I., 1983: Dynamik alpiner Windsysteme. Endbericht Forschungsprojekt No 3556 des Fonds zur Förderung wissenschaftlicher Forchung, Innsbruck, pp. 129.Google Scholar
  17. Vergeiner, I., Dreiseitl, E., 1987: Valley winds and slope winds: Observations and elementary thoughts.Meteorol. Atmos. Phys. 36, 264–286.Google Scholar
  18. Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys: Part I. Observations.J. Appl. Meteor. 21, 270–289.Google Scholar
  19. Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. In: Blumen, W.,Atmospheric Processes over Complex Terrain. (Meteorological Monographs, AMS, 23, 45), 5–42.Google Scholar
  20. Whiteman, C. D., Barr, S., 1986: Atmospheric mass transport by along-valley wind systems in a deep Colorado valley.J. Appl. Meteor. 25, 1205–1212.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • E. Mursch-Radlgruber
    • 1
  1. 1.Institut für Meteorologie und PhysikUniversität für BodenkulturWienAustria

Personalised recommendations