Skip to main content
Log in

Conformational differences of oxytocin and vasopressin as observed by fluorescence anisotropy decays and transient effects in collisional quenching of tyrosine fluorescence

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We used gigahertz frequency-domain fluorometry to examine the tyrosyl fluorescence intensity and anisotropy decays of the single-tyrosine cyclic peptide hormones oxytocin and vasopressin. Acrylamide quenching and a distance-dependent quenching model for collisional quenching were used to evaluate the extent of tyrosyl exposure to the quencher and to provide increased resolution of the picosecond anisotropy decays. Analysis of the intensity decays using a lifetime distribution model shows different distributions for oxytocin and vasopressin. We found that the tyrosyl fluorescence of lysine-vasopressin, as revealed both by the lifetime Stern-Volmer plots and from the quenching analysis, is quenched more effectively than oxytocin. ForN-acetyltyrosinamide (NATyrA), oxytocin, and lysine-vasopressin, we recovered apparent diffusion coefficients for quenching of 4.7×10−6, 0.44×10−6, and 4.3×10−6 cm2/s, respectively, the lower value for oxytocin suggesting a shielded environment for its tyrosyl residue. Tyrosyl anisotropy decays were recovered by global analysis of progressively quenched samples. Compared with oxytocin, vasopressin displayed a longer correlation time for overall rotational diffusion and a higher amplitude for picosecond segmented motions of its tyrosyl residue. All the data are consistent with a more extended and flexible solution structure for vasopressin than for oxytocin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Hagler, D. J. Osguthorpe, P. Dauber-Osguthorpe, and J. C. Hempel, (1985)Science 227, 1309–1315.

    PubMed  Google Scholar 

  2. D. H. Live, H. R. Wyssbrod, A. J. Fischman, W. C. Agosta, H. Bradley, and D. Cowburn (1979)J. Am. Chem. Soc. 101, 474–479.

    Google Scholar 

  3. J. A. Glasel, V. J. Hruby, J. F. McKelvy, and A. F. Spatola (1973)J. Mol. Biol. 79, 555–575.

    PubMed  Google Scholar 

  4. J. B. A. Ross, W. R. Laws, A. Buku, J. C. Sutherland, and H. R. Wyssbrod (1986)Biochemistry 25, 607–612.

    PubMed  Google Scholar 

  5. L. C. Craig, E. J. Harfenist, and A. C. Paladini (1964)Biochemistry 3, 764–769.

    Google Scholar 

  6. J. R. Somoza and J. W. Brady (1988)Biopolymers 27, 939–956.

    PubMed  Google Scholar 

  7. S. P. Wood, I. J. Tickle, A. M. Treharne, J. E. Pitts, Y. Mascarenhas, J. Y. Li, J. Husain, S. Cooper, T. L. Blundell, V. Hruby, A. Buku, A. J. Fischman, and H. R. Wyssbrod (1986)Science 232, 633–636.

    PubMed  Google Scholar 

  8. D. A. Langs, G. D. Smith, J. J. Stezowski, and R. E. Huges (1986)Science 232, 1240–1242.

    PubMed  Google Scholar 

  9. C. W. Smith (1981) in D. H. Schlesinger (Ed.),Neurohypophyseal Peptide Hormones and Other Biological Active Peptides. Elsevier North-Holland, Amsterdam, pp. 23–25.

    Google Scholar 

  10. J. B. A. Ross, W. R. Laws, K. W. Rousslang, and H. R. Wyssbrod (1992) in J. R. Lakowicz (Ed.),Fluorescence Spectroscopy, Vol. 3. Biochemical Applications, Plenum, New York (in press).

    Google Scholar 

  11. J. B. A. Ross, W. R. Laws, J. C. Sutherland, A. Buku, P. G. Katsoyannis, I. L. Schwartz, and H. R. Wyssbrod (1986)Photochem. Photobiol. 44, 365–370.

    PubMed  Google Scholar 

  12. J. R. Lakowicz, G. Laczko, and I. Gryczynski (1987)Biochemistry 26, 82–90.

    PubMed  Google Scholar 

  13. I. Yamazaki, N. Tamai, H. Kume, H. Tsuchiya, and K. Oba (1985)Rev. Sci. Instrum. 56, 1187–1194.

    Google Scholar 

  14. E. W. Small, L. J. Libertini, and I. Isenberg (1984)Rev. Sci. Instrum. 55, 879–885.

    Google Scholar 

  15. A. van Hoek, J. Vervoost, and A. J. W. G. Visser (1983)J. Biochem. Biophys. Methods 7, 243–254.

    PubMed  Google Scholar 

  16. D. J. S. Birch, A. S. Holmes, J. R. Gilchrist, R. E. Imhof, S. M. Al-Shawi, and B. Nadolski (1987)J. Phys. E. Sci. Instrum. 20, 471–473.

    Google Scholar 

  17. D. V. O'Conner and D. Phillips (1984)Time-Correlated Single Photon Counting, Academic Press, New York.

    Google Scholar 

  18. A. J. W. G. Visser (Ed.), (1985)Anal. Instrum. 14, 193–566.

    Google Scholar 

  19. J. R. Lakowicz, M. L. Johnson, I. Gryczynski, H. Szmacinski, N. Joshi, and G. Laczko (1988)SPIE 909, 170–177.

    Google Scholar 

  20. J. R. Lakowicz (Ed.) (1990)SPIE 1204, 1–850.

  21. E. Gratton and M. Limkeman (1983)Biophys. J. 44, 315–323.

    PubMed  Google Scholar 

  22. J. R. Lakowicz and B. P. Maliwal (1985)Biophys. Chem. 21, 61–73.

    PubMed  Google Scholar 

  23. J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum. 57, 2499–2506.

    Google Scholar 

  24. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz (1990)Rev. Sci. Instrum. 61, 2331–2337.

    Google Scholar 

  25. J. M. Beechem, J. R. Knutson, J. A. B. Ross, B. J. Turner, and L. Brand (1983)Biochemistry 22, 6054–6063.

    Google Scholar 

  26. J. R. Knutson, J. M. Beechem, and L. Brand (1983)Chem. Phys. Lett. 202, 501–507.

    Google Scholar 

  27. J. R. Lakowicz, E. Gratton, G. Laczko, H. Cherek, and M. Limkeman (1984)Biophys. J. 46, 463–477.

    PubMed  Google Scholar 

  28. J. R. Lakowicz, H. Cherek, I. Gryczynski, N. Joshi, and M. L. Johnson (1987)Biophys. J. 51, 755–768.

    PubMed  Google Scholar 

  29. M. R. Eftink and C. A. Ghiron (1987)Biochim. Biophys. Acta 916, 343–349.

    PubMed  Google Scholar 

  30. M. R. Eftink and C. A. Ghiron (1981)Anal. Biochem. 114, 199–227.

    PubMed  Google Scholar 

  31. J. R. Lakowicz,Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1983.

    Google Scholar 

  32. H. C. E. M. Marsch, G. K. A. Kochler, and R. G. Hiskey (1981)Biochim. Biophys. Acta 667, 35–42.

    PubMed  Google Scholar 

  33. M. C. Cubbin and C. M. Kay (1980)FEBS Lett. 22, 72–76.

    Google Scholar 

  34. A. Follenius and D. Gerand (1983)Photochem. Photobiol. 38, 373–378.

    PubMed  Google Scholar 

  35. N. Joshi, M. L. Johnson, I. Gryczynski, and J. R. Lakowicz (1987)Chem. Phys. Lett. 135, 200–207.

    Google Scholar 

  36. J. R. Lakowicz, M. L. Johnson, N. Joshi, I. Gryczynski, and G. Laczko (1986)Chem. Phys. Lett. 131, 343–348.

    Google Scholar 

  37. J. R. Lakowicz, M. L. Johnson, I. Gryczynski, N. Joshi, and G. Laczko (1987)J. Phys. Chem. 91, 3277–3285.

    Google Scholar 

  38. J. M. G. Martinho and M. A. Winnik (1987)J. Phys. Chem. 91, 3640–3644.

    Google Scholar 

  39. D. J. S. Birch, A. D. Dutch, R. E. Imhof, B. Z. Nadolski, and I. Soutar (1987)J. Photochem. 38, 239–254.

    Google Scholar 

  40. W. R. Ware and T. L. Nemzek (1973)Chem. Phys. Lett. 23, 557–563.

    Google Scholar 

  41. T. L. Nemzek and W. R. Ware (1975)J. Chem. Phys. 62, 447–453.

    Google Scholar 

  42. J. R. Lakowicz, N. B. Joshi, M. L. Johnson, H. Szmacinski, and I. Gryczynski (1987)J. Biol. Chem. 262, 10907–10910.

    PubMed  Google Scholar 

  43. J. R. Alcala, E. Gratton, and F. G. Prendergast (1987)Biophys. J. 51, 587–596.

    PubMed  Google Scholar 

  44. J. R. Alcala, E. Gratton, and F. G. Prendergast (1987)Biophys. J. 51, 925–936.

    PubMed  Google Scholar 

  45. J. R. Lakowicz, H. Cherek, I. Gryczynski, N. Joshi, and M. L. Johnson (1987)Biophys. Chem. 28, 35–50.

    PubMed  Google Scholar 

  46. I. Gryczynski, J. R. Lakowicz, and M. Eftink (1988)Biochim. Biophys. Acta 954, 244–252.

    PubMed  Google Scholar 

  47. E. Gratton, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and M. Limkeman (1984)Biophys. J. 46, 473–486.

    Google Scholar 

  48. F. C. Collins (1950)J. Colloid Sci. 5, 499–505.

    Google Scholar 

  49. F. C. Collins and G. E. Kimball (1949)J. Colloid Sci. 4, 425–437.

    Google Scholar 

  50. B. P. Maliwal and J. R. Lakowicz (1986)Biochim. Biophys. Acta 873, 161–169.

    PubMed  Google Scholar 

  51. B. P. Maliwal and J. R. Lakowicz (1986)Biochim. Biophys. Acta 873, 161–172.

    PubMed  Google Scholar 

  52. A. G. Szabo and D. M. Rayner (1980)J. Am. Chem. Soc. 102, 554–563.

    Google Scholar 

  53. B. Donzel, J. P. Gauduchon, and Ph. Wahl (1974)J. Am. Chem. Soc. 96, 801–808.

    Google Scholar 

  54. R. J. Robbins, G. R. Fleming, G. S. Beddard, G. Robinson, P. J. Thistlethwaite, and G. J. Woolfe (1980)J. Am. Chem. Soc. 102, 6271–6279.

    Google Scholar 

  55. W. R. Laws, J. B. A. Ross, H. R. Wyssbrod, J. M. Beechem, L. Brand, and J. C. Sutherland (1986)Biochemistry 25, 599–607.

    PubMed  Google Scholar 

  56. J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Biophys. Chem. 24, 97–100.

    PubMed  Google Scholar 

  57. I. Gryczynski, J. R. Lakowicz, and R. F. Steiner (1988)Biophys. Chem. 30, 49–59.

    PubMed  Google Scholar 

  58. M. R. Eftink and C. A. Ghiron (1976)J. Phys. Chem. 80, 486–493.

    Google Scholar 

  59. M. R. Eftink and C. A. Ghiron (1977)Biochemistry 16, 5546–5551.

    PubMed  Google Scholar 

  60. T. Forster (1948)Annal. Phys. Ser. 6 2, 55–75.

    Google Scholar 

  61. J. R. Lakowicz and I. Gryczynski (1990) unpublished Observation.

  62. R. Deslauriers and I. C. P. Smith (1970)Biochem. Biophys. Res. Commun. 40, 179–185.

    PubMed  Google Scholar 

  63. D. W. Urry and R. Walter (1971)Proc. Natl. Acad. Sci. USA 68, 956–958.

    Google Scholar 

  64. R. Walter, J. D. Glockson, I. L. Schwartz, R. T. Havran, J. Meinhofer, and D. W. Urry (1972)Proc. Natl. Acad. Sci. USA 69, 1920–1924.

    PubMed  Google Scholar 

  65. J. D. Glickson, D. W. Urry, and R. Walter (1972)Proc. Natl. Acad. Sci. USA 69, 2566–2569.

    PubMed  Google Scholar 

  66. R. Walter (1972) in H. Hansen and H. Takubke (Eds.),Peptides, North-Holland, Amsterdam, pp. 324–327.

    Google Scholar 

  67. R. Deslauriers, I. C. P. Smith, and R. Walter (1974)J. Am. Chem. Soc. 96, 2289–2291.

    PubMed  Google Scholar 

  68. R. Walter (1977)Fed. Proc. 36, 1872–1878.

    PubMed  Google Scholar 

  69. V. J. Hruby (1980) in B. Weinstein (Ed.),Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Dekker, New York, pp. 1–188.

    Google Scholar 

  70. V. J. Hruby and H. I. Mosberg (1981) in D. H. Schlesinger (Ed.),Neurohypophyseal Peptide Hormones and Other Biological Active Peptides, Elsevier North-Holland, Amsterdam, pp. 227–237.

    Google Scholar 

  71. V. J. Hruby (1981) in A. S. V. Burgen and G. C. K. Roberts (Eds.),Topics in Molecular Pharmacology, North-Holland, Amsterdam, p. 100.

    Google Scholar 

  72. V. J. Hruby, D. A. Upson, D. M. Yamamota, C. W. Smith, and R. Walter (1979)J. Am. Chem. Soc. 101, 2717–2721.

    Google Scholar 

  73. R. J. Turner, J. M. Matsoukas, and G. J. Moore (1990)Biochem. Biophys. Res. Comm. 171, 996–1001.

    PubMed  Google Scholar 

  74. N. J. Turro (Ed.) (1978)Modern Molecular Photochemistry, Benjamin Cummings, Inc., pp. 305–311.

  75. D. D. Eads, B. G. Dismer, and G. R. Fleming (1990)J. Chem. Phys. 93, 1136–1148.

    Google Scholar 

  76. J. Kusba and B. Sipp (1988)Chem. Phys. 124, 223–226.

    Google Scholar 

  77. J. R. Lakowicz et al, submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Alfons Kawski on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gryczynski, I., Szmacinski, H., Laczko, G. et al. Conformational differences of oxytocin and vasopressin as observed by fluorescence anisotropy decays and transient effects in collisional quenching of tyrosine fluorescence. J Fluoresc 1, 163–176 (1991). https://doi.org/10.1007/BF00865363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865363

Key Words

Navigation