Journal of Fluorescence

, Volume 1, Issue 4, pp 225–234 | Cite as

Fluorescence anisotropy of cyanobacterial phycobilisomes oriented in polyvinyl alcohol (PVA) films

  • D. Frąckowiak
  • A. Dudkowiak
  • B. Zelent
  • R. M. Leblanc


Polarized absorption (at 296 and 85 K), fluorescence, and photoacoustic (at 296 and 85 K) spectra of antenna complexes—phycobilisomes isolated from cyanobacteriaTolypothrix tenuis andOscillatoria and embedded in isotropic and anisotropic polyvinyl alcohol films—were measured. From the sets of polarized components of emission, the anisotropy of fluorescence for the pools of differently oriented molecules was calculated. On the basis of polarized photoacoustic and emission spectra, the competition between the process of thermal deactivation of excitation and excitation energy transfer in a chain of excitation donor and acceptor chromophores of phycobilisomes is discussed.

Key Words

Cyanobacteria excitation energy transfer photoacoustic spectra phycobilisomes polarized fluorescence polyvinyl alcohol (PVA) films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Gantt (1981)Annu. Rev. Plant Physiol. 32, 327–347.Google Scholar
  2. 2.
    A. N. Glazer (1984)Biochim. Biophys. Acta,786, 29–51.Google Scholar
  3. 3.
    B. A. Zilinskas and L. S. Greenwald (1986)Photosynth. Res. 10, 7–35.Google Scholar
  4. 4.
    M. Mimuro, I. Yamazaki, N. Tamai, and T. Katoh (1989)Biochim. Biophys. Acta 973, 153–162.Google Scholar
  5. 5.
    T. Schrimmer, W. Bode, and R. Huber (1987)J. Mol. Biol. 190, 677–695.Google Scholar
  6. 6.
    D. Frąckowiak, E. Gantt, S. Hotchandani, C. A. Lipschultz, and R. M. Leblanc (1986)Photochem. Photobiol. 43, 335–337.Google Scholar
  7. 7.
    D. Frąckowiak, L. G. Erokhina, G. Picard and R. M. Leblanc (1987)Photochem. Photobiol. 46, 227–285.Google Scholar
  8. 8.
    D. Frąckowiak, L. G. Erokhina, A. Balter, L. Lorrain, J. Szurkowski, and B. Szych (1986)Biochim. Biophys. Acta 851, 173–180.Google Scholar
  9. 9.
    D. Frąckowiak, M. Mimuro, I. Yamazaki, N. Tamai, and Y. Fujita (1989)Photochem. Photobiol. 50, 563–570.Google Scholar
  10. 10.
    D. Frąckowiak, M. Niedbalska, R. Cegielski, M. Romanowski, and L. G. Erokhina (1990)Photosynthetica 24, 201–209.Google Scholar
  11. 11.
    L. J. Juszczak, B. A. Zilinskas, N. E. Gacintov, J. Breton, and K. Sauer (1991)Biochim. Biophys. Acta 1058, 363–373.Google Scholar
  12. 12.
    A. G. Galiano, N. E. Gacintov, and J. Breton (1986)Photochem. Photobiol. 43, 551–558.Google Scholar
  13. 13.
    D. Bruce and J. Biggins (1985)Biochim. Biophys. Acta 810, 295–301.Google Scholar
  14. 14.
    L. Juszczak, N. E. Gacintov, B. A. Zilinskas, and J. Breton (1988) in H. Scheer and S. Schneider (Eds.),Photosynthetic Light Harvesting Systems, Walter de Gruyer, Berlin, pp. 281–292.Google Scholar
  15. 15.
    E. Gantt, C. A. Lipschultz, J. Grabowski, and B. K. Zimmerman (1979)Plant Physiol. 63, 615–620.Google Scholar
  16. 16.
    L. G. Erokhina, L. M. Shubin, and A. A. Krasnowski (1980)Fiziol. Rast. 27, 483–490.Google Scholar
  17. 17.
    D. Ducharme, A. Tessier, and R. M. Leblanc (1979)Rev. Sci. Instr. 50, 42–43.Google Scholar
  18. 18.
    F. Boucher and R. M. Leblanc (1985)Photochem. Photobiol. 41, 479.Google Scholar
  19. 19.
    D. Frąckowiak, S. Hotchandani, B. Szych, and R. M. Leblanc (1986)Acta Phys. Polon. A69, 121–133.Google Scholar
  20. 20.
    D. Frąckowiak, S. Hotchandani and R. M. Leblanc (1985)Photochem. Photobiol. 42, 559–565.Google Scholar
  21. 21.
    I. Gruda, S. Laliberte, M. Niedbalska, and D. Frąckowiak (1987)J. Lumin. 39, 1–10.Google Scholar
  22. 22.
    D. Frąckowiak, I. Gruda, M. Niedbalska, M. Romanowski, and A. Dudkowiak (1990)J. Photochem. Photobiol. A54, 37–48.Google Scholar
  23. 23.
    B. Szalontai, V. Csizmadia, Z. Gambos and K. Csatorday in H. Scheer and S. Schneider (Eds.),Photosynthetic Light Harvesting Systems, Walter de Gruyer, Berlin, pp. 307–316.Google Scholar
  24. 24.
    L. J. Chen, Y. S. Ma, L. C. Chiang, and L. Y. Yang (1990)Photochem. Photobiol. 52, 1071–1076.Google Scholar
  25. 25.
    M. Mimuro, P. Függlistaller, R. Rümbeli, and H. Zuber (1986)Biochim. Biophys. Acta 8488, 155–166.Google Scholar
  26. 26.
    R. Fischer, S. Siebzenrubl, and H. Scheer (1988) in H. Scheer and S. Schneider (Eds.),Photosynthetic Light Harvesting Systems, Walter de Gruyer, Berlin, pp. 71–76.Google Scholar
  27. 27.
    R. Rümbeli and H. Zuber (1988) in H. Scheer and S. Schneider (Eds.),Photosynthetic Light Harvesting Systems, Walter de Gruyer, Berlin, pp. 61–71.Google Scholar
  28. 28.
    A. Skibinski, L. Marcotte, L. G. Erokhina, M. Romanowski, and D. Frąckowiak (1990)Photosynthetica 24, 243–248.Google Scholar
  29. 29.
    D. Frąckowiak, K. Fiksinski, and H. Pienkowska (1981)Photochem. Photobiophys. 2, 21–32.Google Scholar
  30. 30.
    M. Mimuro, I. Yamazaki, S. Itoh, N. Tamai, and K. Satoh (1988)Biochim. Biophys. Acta 933, 478–486.Google Scholar
  31. 31.
    K. Csatorday, R. MacColl, V. Csizmadia, J. Grabowski, and C. Bagyinka (1984)Biochemistry 23, 6466–6470.Google Scholar
  32. 32.
    K. Uehara, M. Mimuro, Y. Fujita, and M. Tanaka (1988)Photochem. Photobiol. 48, 725–732.Google Scholar
  33. 33.
    G. Zucchelli, R. C. Jennings, and F. M. Garlaschi (1990)J. Photochem. Photobiol. B6, 381–394.Google Scholar
  34. 34.
    D. Frąckowiak, A. Kowalczyk, and A. Skibiński (1992)Biophys. Chem. 42, 153–161.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • D. Frąckowiak
    • 1
  • A. Dudkowiak
    • 1
    • 2
  • B. Zelent
    • 1
  • R. M. Leblanc
    • 1
  1. 1.Centre de recherche en photobiophysiqueUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.Institute of PhysicsPoznań Technical UniversityPoznańPoland

Personalised recommendations