Skip to main content
Log in

Fluorescence studies on R-phycoerythrin and C-phycoerythrin

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Biliproteins are photosynthetic light-harvesting proteins, which transfer excitons with high efficiencies over relatively long distances until they arrive at a photosynthetic reaction center. Purified R-phycoerythrin (isolated from a red alga) and C-phycoerythrin (isolated from a cyanobacterium), each of which contains several chromophores, were studied by a combination of fluorescence emission, fluorescence excitation polarization, and absorption methods. The polarization spectra of both these biliproteins showed that there was a minimum of two spectrally distinct sensitizing chromophores, which, after absorbing photons, transfer excitons to the lowest-energy (fluorescing) chromophores. Some of these spectroscopic data were used to deconvolute the absorption spectra into the spectra of the two sensitizing and one fluorescing chromophores. It was shown that the higher-energy sensitizing chromophore could readily transfer its excitation energy to the fluorescing chromophore using the lower-energy sensitizing chromophore as an intermediary. However, there was sufficient spectral overlap between the higher-energy sensitizing chromophore and the fluorescing chromophore so that direct transfer between them could not be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Gantt (1981)Annu. Rev. Plant Physiol. 32, 327–347.

    Google Scholar 

  2. E. Gantt (1980)Int. Rev. Cytol. 66, 45–80.

    Google Scholar 

  3. R. MacColl and D. Guard-Friar (1987)Phycobiliproteins, CRC Press, Boca Raton, FL

    Google Scholar 

  4. H. Scheer (1981)Angew. Chem. Int. Ed. Engl. 20, 241–251.

    Google Scholar 

  5. B. A. Zilinskas and L. S. Greenwald (1986)Photosynth. Res. 10, 7–35.

    Google Scholar 

  6. H. Zuber (1985)Photochem. Photobiol,42, 821–844.

    Google Scholar 

  7. H. Zuber (1987) in J. Barber, (Ed.),Light Reactions, Elsevier Science, Amsterdam, Vol. 11, pp. 97–259.

    Google Scholar 

  8. F. W. J. Teale and R. E. Dale (1970)Biochem. J. 116, 161–169.

    Google Scholar 

  9. R. E. Dale and F. W. J. Teale (1970)Photochem. Photobiol. 12, 99–117.

    Google Scholar 

  10. A. R. Holzwarth (1986)Photochem. Photobiol. 43, 707–725.

    Google Scholar 

  11. D. S. Berns and R. MacColl (1989)Chem. Rev. 89, 807–825.

    Google Scholar 

  12. R. MacColl, J. J. Lee, and D. S. Berns (1971)Biochem. J. 122, 421–426.

    Google Scholar 

  13. T. Kobayashi, E. O. Degenkolb, R. Bersohn, P. M. Rentzepis, R. MacColl, and D. S. Berns (1979)Biochemistry 18, 5073–5078.

    Google Scholar 

  14. C. A. Hanzlik, L. E. Hancock, R. S. Knox, D. Guard-Friar, and R. MacColl (1985).J. Luminesc. 34, 99–106.

    Google Scholar 

  15. P. Hefferle, W. John, H. Scheer, and S. Schneider (1984)Photochem. Photobiol. 39, 221–232.

    Google Scholar 

  16. P. Hefferle, M. Nies, W. Wehrmeyer, and S. Schneider (1983)Photobiochem. Photobiophys. 5, 325–334.

    Google Scholar 

  17. J. Wendler, A. R. Holzwarth, and W. Wehrmeyer (1984)Biochim. Biophys. Acta 765, 58–67.

    Google Scholar 

  18. G. W. Suter, P. Mazzola, J. Wendler and A. A. Holzwarth (1984)Biochim. Biophys. Acta 766, 269–276.

    Google Scholar 

  19. T. Gillbro, A. Sandström, V. Sundström, and A. R. Holzwarth (1983)FEBS Lett. 162, 64–68.

    Google Scholar 

  20. A. R. Holzwarth, J. Wendler, and W. Wehrmeyer (1983)Biochim. Biophys. Acta 724, 388–395.

    Google Scholar 

  21. W. Wehrmeyer, J. Wendler, and A. R. Holzwarth (1985)Eur. J. Cell Biol. 36, 17–23.

    Google Scholar 

  22. E. Fujimori and K. Quinlan (1963)Photosynthetic Mechanisms of Green Plants, National Research Council, Washington, pp. 519–526.

    Google Scholar 

  23. T. Förster (1959)Discuss. Faraday Soc. 27, 7–17.

    Google Scholar 

  24. R. MacColl, K. Csatorday, D. S. Berns, and E. Traeger (1980)Biochemistry 19, 2817–2820.

    Google Scholar 

  25. J. Jung, P.-S. Song, R. J. Paxton, M. S. Edelstein, R. Swanson, and E. E. Hazen, Jr. (1980)Biochemistry 19, 24–32.

    Google Scholar 

  26. R. MacColl, K. Csatorday, D. S. Berns, and E. Traeger (1981)Arch. Biochem. Biophys. 208, 42–48.

    Google Scholar 

  27. R. MacColl, D. Guard-Friar, T. J. Ryan, K. Csatorday, and P. Wu (1988)Biochim. Biophys. Acta 934, 275–281.

    Google Scholar 

  28. K. Csatorday, R. MacColl, D. Guard-Friar, and C. A. Hanzlik (1987)Photochem. Photobiol. 44, 845–849.

    Google Scholar 

  29. A. R. H. Holzwarth, E. Bittersmann, W. Reuter, and W. Wehrmeyer (1990)Biophys. J. 57, 133–145.

    Google Scholar 

  30. R. MacColl, D. Guard-Friar, and T. J. Ryan (1990)Biochemistry 29, 430–435.

    Google Scholar 

  31. W. Sidler, B. Kumpf, W. Rüdiger, and H. Zuber (1986)Biol. Chem. Hoppe-Seyler 367, 627–642.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacColl, R. Fluorescence studies on R-phycoerythrin and C-phycoerythrin. J Fluoresc 1, 135–140 (1991). https://doi.org/10.1007/BF00865209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865209

Key Words

Navigation