Skip to main content
Log in

Rotational Brownian dynamics of semiflexible broken rods

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Using the Brownian dynamics simulation technique, we study the rotational dynamics of a semiflexible broken rod. We employ a suitable bead model with stiff springs between beads and strong forces opposing to bending, except at the joint where flexibility is variable. We consider mostly broken rods with equal arms. From the simulated Brownian trajectories we obtain the correlation function for the second order Legendre polynomial of the reorientational angle of the end-to-end vector and of the arm vector. These correlation functions are closely related to fluorescence anisotropy decay and electric birefringence decay, respectively. In the first case, the relaxation time for a completely flexible rod agrees with the Harvey-Wegener theory, and in the second, the longest relaxation time agrees well with that obtained from the rigid-body treatment over the whole range of flexibility. Furthermore, we discuss the relative importance of flexibility in both types of decay. Finally, we present results for a case with unequal arms, confirming the validity of the Harvey-Wegener theory and the rigid-body treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yguerabide, H. F. Epstein, and L. Stryer (1970)J. Mol. Biol. 51, 573.

    Google Scholar 

  2. S. C. Harvey (1979) Biopolymers18, 1081.

    Google Scholar 

  3. H. Yu and W. H. Stokmayer (1967)J. Chem. Phys.,47, 1369.

    Google Scholar 

  4. J. García de la Torre and V. A. Bloomfield (1978)Biopolymers 17, 1605.

    Google Scholar 

  5. W. A. Wegener (1984)Biopolymers 23, 2243.

    Google Scholar 

  6. G. Wilemski (1977)Macromolecules 10, 28.

    Google Scholar 

  7. J. J. García Molina and J. García de la Torre (1984)Int. J. Biol. Macromol. 6, 170.

    Google Scholar 

  8. A. Iniesta, F. G. Díaz, and J. García de la Torre (1988)Biophys. J. 54, 269.

    Google Scholar 

  9. J. García de la Torre and V. A. Bloomfield (1981)Q. Rev. Biophys. 14, 81.

    Google Scholar 

  10. J. García de la Torre (1989) in S. E. Harding and A. J. Rowe (Eds.),Dynamic Properties of Biomolecular Assemblies, Royal Society of Chemistry, Cambridge.

    Google Scholar 

  11. W. A. Wegener (1980)Biopolymers 19, 1899.

    Google Scholar 

  12. S. C. Harvey, P. Mellado, and J. García de la Torre (1983)J. Chem. Phys. 78, 2081.

    Google Scholar 

  13. J. García de la Torre, P. Mellado, and V. Rodes (1985)Biopolymers 24, 2145.

    Google Scholar 

  14. W. A. Wegener (1982)J. Chem. Phys. 76, 6425.

    Google Scholar 

  15. P. Mellado, A. Iniesta, F. G. Díaz, and J. García de la Torre, (1988)Biopolymers 27, 1771.

    Google Scholar 

  16. R. F. Goldstein (1985)J. Chem. Phys. 83, 2390.

    Google Scholar 

  17. F. G. Díaz and J. García de la Torre (1988),J. Chem. Phys. 88, 7698.

    Google Scholar 

  18. D. L. Ermak and J. A. McCammon (1979).J. Chem. Phys. 69, 1352.

    Google Scholar 

  19. S. A. Allison and J. A. McCammon (1984)Biopolymers 23, 167.

    Google Scholar 

  20. O. Hassager,J. Chem. Phys. (1974)60, 2111.

    Google Scholar 

  21. K. Nagasaka and H. Yamakawa (1985)J. Chem. Phys. 83, 6480.

    Google Scholar 

  22. D. Roitman and B. H. Zimm,J. Chem. Phys. (1984)81, 6348.

    Google Scholar 

  23. D. Roitman and B. H. Zimm,J. Chem. Phys. (1984)81, 6348.

    Google Scholar 

  24. D. Roitman (1984)J. Chem. Phys. 81, 6356.

    Google Scholar 

  25. F. G. Díaz, A. Iniesta, and J. García de la Torre (1987).J. Chem. Phys. 87, 6021.

    Google Scholar 

  26. P. Mellado and J. García de la Torre (1982)Biopolymers 21, 1857.

    Google Scholar 

  27. S. A. Allison (1986)Macromolecules 19, 118.

    Google Scholar 

  28. A. Iniesta and J. García de la Torre (1990)J. Chem. Phys. 92, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iniesta, A., Carmen López, M. & de la Torre, J.G. Rotational Brownian dynamics of semiflexible broken rods. J Fluoresc 1, 129–134 (1991). https://doi.org/10.1007/BF00865208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865208

Key Words

Navigation