Skip to main content
Log in

Picosescond fluorescence lifetime standards for frequency- and time-domain fluorescence

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We characterized a series of dimethylamino-stilbene derivatives as standards for time-domain and frequency-domain lifetime measurements. The substances have reasonable quantum yields, are soluble in solvents available with a high purity, and do not show significant sensitivity to oxygen quenching. All the fluorophores displayed single exponential intensity decays, as characterized by frequency-domain measurements to 10 GHz. The decay times vary from 880 to 57 ps, depending on structure, solvent, and temperature, which is a useful range for modern picosecond time-domain or gigahertz frequency-domain instruments. These fluorophores may be used either to test an instrument or as reference compounds to eliminate color effects. We also characterized two-fluorophore mixtures, with the decay times spaced twofold (150 and 300 ps), with varying proportions. These mixtures are useful for testing the resolution of other time- and frequency-domain instrumentation. The excitation wavelength ranges from 260 to 430 nm, and the emission from 350 to 550 nm. The decay times are independent of the excitation and emission wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Fleming (1986)Chemical Applications of Ultrafast Spectroscopy, Oxford University Press, New York.

    Google Scholar 

  2. D. M. Jameson and G. D. Reinhart (1986)Fluorescent Biomolecules. Methodologies and Applications. Plenum Press, New York.

    Google Scholar 

  3. J. R. Lakowicz (Ed.)Time-Resolved Laser Spectroscopy in Biochemistry II, SPIE, 1204, Bellingham Wash.

  4. J. N. Demas (1983)Excited State Lifetime Measurements, Academic Press, New York.

    Google Scholar 

  5. D. V. O'Connor and D. Phillips (1984)Time-Correlated Single Photon Counting, Academic Press, Florida.

    Google Scholar 

  6. E. Gratton and M. Limkeman (1983)Biophys. J. 44, 315–324.

    Google Scholar 

  7. J. R. Lakowicz and B. P. Maliwal (1985)Biophys. Chem. 21, 61–78.

    Google Scholar 

  8. K. W. Berndt, I. Gryczynski, and J. R. Lakowicz (1991)Anal. Biochem. 192, 131–137.

    Google Scholar 

  9. J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum. 57, 2499–2506.

    Google Scholar 

  10. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz (1990)Rev. Sci. Instrum 61(9), 2331–2337.

    Google Scholar 

  11. A. Grinvald (1976),Anal. Biochem. 75, 260–280.

    Google Scholar 

  12. R. A. Lampert, L. A. Chewter, D. Phillips, D. V. O'Connor, A. J. Roberts, and S. R. Meech (1983)Anal. Chem. 55, 68–73.

    Google Scholar 

  13. N. Boens, N. Tamai, I. Yamazaki, and T. Yamazaki (1990)Photochem. Photobiol. 52(4), 911–917.

    Google Scholar 

  14. R. B. Thompson and E. Gratton (1988)Anal. Chem. 60, 670–674.

    Google Scholar 

  15. D. Manzerall, P. P. Ho, and R. R. Alfano (1985)Photochem. Photobiol. 42(2), 183–186.

    Google Scholar 

  16. J. R. Lakowicz, H. Cherek, and A. Balter (1981)J. Biochem. Biophys. Meth. 5, 131–146.

    Google Scholar 

  17. S. Kinoshita and T. Kushida (1981)Rev. Sci. Instrum. 53(4), 469–472.

    Google Scholar 

  18. D. M. Rayner, A. E. McKinnon, and A. G. Szabo (1976)Can. J. Chem. 54, 3246–3259.

    Google Scholar 

  19. R. K. Bauer and A. Balter (1979)Opt. Commun. 28, 91–96.

    Google Scholar 

  20. D. V. O'Connor, S. R. Meech, and D. Phillips (1982)Chem. Phys. Lett. 88(1), 22–26.

    Google Scholar 

  21. R. F. Chen (1974)Anal. Biochem. 57, 593–604.

    Google Scholar 

  22. D. A. Barrow and B. R. Lentz (1983)J. Biochem. Biophys. Meth. 7, 217–234.

    Google Scholar 

  23. G. R. Holtom (1990) in J. R. Lakowicz, (Ed.),Time-Resolved Laser Spectroscopy in Biochemistry II, SPIE 1204, Bellingham, Wash., pp. 2–12.

  24. R. D. Spencer and G. Weber (1990)J. Chem. Phys. 52, 1654–1663.

    Google Scholar 

  25. A. Safarzadeh-Amir (1986)Chem. Phys. Lett. 125, 272–278.

    Google Scholar 

  26. P. R. Bevington (1969)Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.

    Google Scholar 

  27. J. R. Lakowicz, E. Gratton, G. Laczko, H. Cherek, and M. Limkemann (1984)Biophys. J. 46, 463–477.

    Google Scholar 

  28. E. Gratton, J. R. Lakowicz, B. Maliwal, H. Cherek, G. Laczko, and M. Limkemann (1984)Biophys. J. 46, 479–486.

    Google Scholar 

  29. I. Gryczynski, D. Gloyna, and A. Kawski (1980)Z. Naturforsch. 35a, 777–778.

    Google Scholar 

  30. D. Gloyna, A. Kawski, and I. Gryczynski (1980)Z. Naturforsch 35a, 1192–1196.

    Google Scholar 

  31. D. Gloyna, A. Kawski, and I. Gryczynski (1980)Z. Naturforsch. 35a, 1411–1414.

    Google Scholar 

  32. D. Gloyna, A. Kawski, I. Gryczynski and H. Cherek (1987)Chem. Month. 118, 759–772.

    Google Scholar 

  33. E. A. Bailey and G. K. Rollefson (1953)J. Chem. Phys. 21, 1315–1326.

    Google Scholar 

  34. A. Haddow, R. J. G. Harris, G. A. R. Kon, and E. M. F. Roc (1948)Philos. Trans. Roy. Soc. (London) Ser. A 241, 147–159.

    Google Scholar 

  35. E. Lippert and F. Moll (1954)Z. Elektrochem. 58, 718–726.

    Google Scholar 

  36. H. Bredereck, G. Simchen, and W. Griebanow (1973)Chem. Ber. 106, 3732–3738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakowicz, J.R., Gryczynski, I., Laczko, G. et al. Picosescond fluorescence lifetime standards for frequency- and time-domain fluorescence. J Fluoresc 1, 87–93 (1991). https://doi.org/10.1007/BF00865204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865204

Key Words

Navigation