Journal of engineering physics

, Volume 36, Issue 2, pp 252–254 | Cite as

An approximate galerkin method in quasilinear equations of mathematical physics

  • G. A. Khalikov
  • R. G. Shirgazin


The solution of the quasilinear heat-conduction equation is considered by averaging the variable coefficient and by the Bubnov-Galerkin method.


Statistical Physic Mathematical Physic Galerkin Method Variable Coefficient Quasilinear Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, MacMillan, New York (1963).Google Scholar
  2. 2.
    L. S. Leibenzon, Collection of Papers [in Russian], Vol. 2, Izd. Akad. Nauk SSSR (1958).Google Scholar
  3. 3.
    G. A. Khalikov, “Application of an approximate method to solving problems of unstable oil filtration,” Tr. MINKh i GP Fiz. Gidrodin. Neft. Plasta, No. 57 (1966).Google Scholar
  4. 4.
    G. A. Khalikov, “Solution of a group of nonlinear problems in field theory,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 7 (1976).Google Scholar
  5. 5.
    T. A. Andreeva, A. A. Berezovskii, and S. P. Grekov, “On a quasilinear equation of heat conduction,” in: Nonlinear Boundary-Value Problems in Mathematical Physics [in Russian], Izv. Akad. Nauk Ukr. SSR, Kiev (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • G. A. Khalikov
    • 1
  • R. G. Shirgazin
    • 1
  1. 1.Bashkir State UniversityUfa

Personalised recommendations