Journal of engineering physics

, Volume 36, Issue 2, pp 163–167 | Cite as

Mathematical methods for solution of nonstationary radiant-convective heat-exchange problems

  • A. A. Kobyshev
Article
  • 12 Downloads

Abstract

A new analytical method is developed for solution of nonstationary radiant-convective heat-exchange problems in a moving, viscous, absorbing, radiating, and anisotropically scattering medium. The method is applied to solution of the problem for a semiinfinite body.

Keywords

Statistical Physic Mathematical Method Semiinfinite Body 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. A. Surinov, “Integral equations of transfer theory for radiation in an absorbing and anisotropically scattering medium,” Teplofiz. Vys. Temp.,5, No. 2 (1967).Google Scholar
  2. 2.
    Yu. A. Surinov, “Some general questions on heat-exchange theory,” in: Tr. Mosk. Tekh. Inst. Pishch. Promyshl.,15, Vopr. Tepl. Perenosa, 3 (1960).Google Scholar
  3. 3.
    A. A. Kobyshev, “Methods of calculation for nonlinear problems of nonstationary thermal conductivity,” Tr. MÉSI, Vychisl. Mat. Statist. Mot. Slozhn. Sistem, Part II (1974), p. 92.Google Scholar
  4. 4.
    L. I. Sedov, Mechanics of Continuous Media [in Russian], Vols. I, II, Nauka, Moscow (1973).Google Scholar
  5. 5.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon (1965).Google Scholar
  6. 6.
    Heat Exchange Theory (Terminology) (A Handbook of Recommended Terms) [in Russian], 83rd Ed., Nauka, Moscow (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. A. Kobyshev
    • 1
  1. 1.Institute of Steel and AlloysMoscow

Personalised recommendations