Skip to main content
Log in

Influence of heterogeneous land surfaces on surface energy and mass fluxes

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

Land-surface heterogeneity affects surface energy fluxes. The magnitudes of selected land-surface influences are quantified by comparing observations with model simulations of the FIFE (First ISLSCP Field Experiment) domain. Several plausible heterogeneous and homogeneous initial and boundary conditions are examined, although soilmoisture variability is emphasized. It turns out that simple spatial averages of surface variation produced biased flux values. Simulated maximum latent-heat fluxes were approximately 30 to 40 W m−2 higher, and air temperatures ≃ 0.4 °C lower (at noon), when computations were initialized with spatially averaged soil-moisture and leaf-area-index fields. The planetary boundary layer (PBL) height and turbulent exchanges were lower as well. It additionally was observed that (largely due to the nonlinear relationship between initial soil-moisture availability and the evapotranspiration rate), “real” latent-heat flux can be substantially less than simulated latent-heat flux using models initialized with spatially averaged soil-moisture fields. Differences between “real” and simulated fluxes also vary with the resolution at which “real” soil-moisture heterogeneity is discretized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avissar, R., Pielke, R. A., 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical model and its impact on regional meteorology.Mon. Wea. Rev. 117, 2113–2136.

    Google Scholar 

  • Avissar, R., Pielke, R. A., 1991: The impact of plant stomatal control on mesoscale atmospheric circulations.Agric. Forest Meteor. 54, 353–372.

    Google Scholar 

  • Boer, G. J., Appe, K., Blackburn, M., Déqué, M., Gates, W. L., Hart, T. L., le Treut, H., Roeckner, E., Sheinin, D. A., Simmonds, I., Smith, R. N. B., Tokioka, T., Wetherald, R. T., Williamson, D., 1992: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models.J. Geophys. Res. 97, (D12), 12771–12786.

    Google Scholar 

  • Deardorff, J. W., 1974: A three-dimensional numerical study of turbulence in an entraining mixed layer.Bound.- Layer Meteor. 7, 199–226.

    Google Scholar 

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation.J. Geophys. Res. 83, 1889–1903.

    Google Scholar 

  • Dickinson, R. E., 1992: Land surface. In: Trenberth, K. E. (ed.)Climate System Modeling. Cambridge: Cambridge University Press, Chapter 5, pp. 149–172.

    Google Scholar 

  • Garratt, J. R., 1993: Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments — a review.J. Climate 6, 419–449.

    Google Scholar 

  • Klink, K., Willmott, C. J., 1994: Influence of soil moisture and surface roughness heterogeneity on modeled climate.Climate Res. 4, 105–118.

    Google Scholar 

  • Mahrer, Y., Pielke, R. A., 1977: A numerical study of the airflow over irregular terrain.Contrib. Atmos. Phys. 50, 98–113.

    Google Scholar 

  • Mahrer, Y., Pielke, R. A., 1978: A test of an upstream spline interpolation technique for the advective terms in a numerical mesoscale model.Mon. Wea. Rev. 106, 818–830.

    Google Scholar 

  • Manabe, S., 1969: Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth's surface.Mon. Wea. Rev. 97, 739–774.

    Google Scholar 

  • McCumber, M. C., Pielke, R. A., 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. Part I: Soil layer.J. Geophys. Res. 86, 9929–9938.

    Google Scholar 

  • McNider, R. T., Pielke, R. A., 1981: Diurnal boundary-layer development over sloping terrain.J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • Oglesby, J. R., 1991: Spring soil moisture, natural climatic variability, and North American drought as simulated by the NCAR Community Climate Model 1.J. Climate 4, 890–897.

    Google Scholar 

  • Oke, T. R., 1987:Boundary Layer Climates. New York: Routledge.

    Google Scholar 

  • Physick, W. L., 1988: Mesoscale modeling of a cold front and its interaction with a diurnally heated land mass.J. Atmos. Sci. 45, 3169–3187.

    Google Scholar 

  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over South Florida.Mon. Wea. Rev. 102, 115–139.

    Google Scholar 

  • Pielke, R. A., Mahrer, Y., 1975: Representation of the heated planetary boundary layer in mesoscale models with coarse vertical resolution.J. Atmos. Sci. 32, 2288–2308.

    Google Scholar 

  • Pielke, R. A., 1984:Mesoscale Meteorological Modeling. Orlando: Academic Press.

    Google Scholar 

  • Pielke, R. A., Dalu, G. A., Snook, J. S., Lee, T. J., Kittel, T. G. F., 1991: Nonlinear influence of mesoscale land use on weather and climate.J. Climate 4, 1053–1069.

    Google Scholar 

  • Pitman, A. J., Yang, Z. L., Henderson-Sellers, A., 1993: Subgrid scale precipitation in AGCMs: re-assessing the land surface sensitivity using a single column model.Climate Dynamics 9, 33–41.

    Google Scholar 

  • Segal, M., Mahrer, Y., Pielke, R. A., 1982: Application of a numerical mesoscale model for the evaluation of seasonal persistent regional climatological patterns.J. Appl. Meteor. 21, 1754–1762.

    Google Scholar 

  • Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E., Murphy, R. E., 1988: The First ISLSCP Field Experiment (FIFE).Bull. Amer. Meteor. Soc. 69, 22–27.

    Google Scholar 

  • Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E., Murphy, R. E., 1992: An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE).J. Geophys. Res. 97, 18345–18371.

    Google Scholar 

  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly spaced data. Proceedings of 23rd National Conference, ACM, 517–524.

  • Song, J., 1995: Influence of heterogeneous land surfaces on the surface energy budget at meso- and large scales. Dissertation at University of Delaware.

  • Song, J., Willmott, C. J., Hanson, B., 1997: Simulating the surface energy budget over the Konza Prairie with a mesoscale model.Agric. Forest Meteor. (forthcoming).

  • Shukla, J., Mintz, Y., 1982: Influence of land surface evapotranspiration on the earth's climate.Science 215, 1498–1501.

    Google Scholar 

  • Steyn, D. G., McKendry, I. G., 1988: Quantitative and qualitative evaluation of a three-dimensional mesoscale numerical model simulation of a sea breeze in complex terrain.Mon. Wea. Rev. 116, 1914–1926.

    Google Scholar 

  • Wood, E. F., Lakshmi, V., 1993: Scaling water and energy fluxes in climate systems: three land-atmospheric modeling experiments.J. Climate 6, 839–857.

    Google Scholar 

  • Zhang, D., Anthes, R. A., 1982: A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data.J. Appl. Meteor. 21, 1594–1609.

    Google Scholar 

  • Zeng, X., Pielke, R., 1995: Landscape-induced atmospheric flow and its parameterization in large-scale numerical models.J. Climate 8, 1156–1177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Willmott, C.J. & Hanson, B. Influence of heterogeneous land surfaces on surface energy and mass fluxes. Theor Appl Climatol 58, 175–188 (1997). https://doi.org/10.1007/BF00865018

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865018

Keywords

Navigation