Theoretical and Applied Climatology

, Volume 50, Issue 1–2, pp 15–22 | Cite as

On the seasonal variation of local relationships between temperature, temperature range, sunshine and cloudiness

  • G. R. Weber
Article

Summary

At Berlin-Dahlem, monthly single station data on cloudiness, sunshine duration, mean, maximum and minimum temperature is statistically analyzed for the time period 1955–1993.

It is found that sunshine duration varies inversely with cloud cover; cloud cover correlates negatively with temperature range. Cloud cover correlates negatively with temperature between March and September, and positively with temperature during the remaining months.

Between 1955 und 1993, there are no significant changes in temperature range in any month but June and September, when a decline occurred.

Sunshine declined significantly in March, June and September. Trends between 1955 and 1987 indicate a larger decline of sunshine and decline in temperature range than between 1955 and 1993.

Locally, sulfate deposition, which may be taken as an indicator of the atmospheric sulfate load, decreased by more than a third between the mid-1950s and the late 1980s. Therefore, at Berlin, the observed increase of cloudiness (decrease of sunshine duration) between the 1950s and the late 1980s went parallel to the measured decrease of sulfate deposition.

Keywords

Sulfate Climate Change Waste Water Water Management Water Pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bücher, A., Dessens, J., 1991: Secular trend of surface temperature at an elevated observatory in the Pyrenees.J. Climate 4, 859–868.Google Scholar
  2. Calvert, J. G., Cd., 1984:SO 2,NO and NO 2 Oxidation Mechanisms: Atmospheric Considerations. Acid Precipitation Series, vol. 3. London: Ann Arbor Science, Butterworth Publishers.Google Scholar
  3. Charlson, R. J., Lovelock, J. E., Andreae, M. O., Warren, S. G., 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Nature 326, 655–661.Google Scholar
  4. Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A. Jr., Hansen, J. E., Hofmann, D. J., 1992: Climate forcing by anthropogenic aerolsols.Science 225, 423–430.Google Scholar
  5. Dobesch, H., 1992: On the variations of sunshine duration in Austria.Theor. App. Climatol. 46, 33–38.Google Scholar
  6. Henderson-Sellers, A., 1986: Increasing cloud in a warming world.Climatic Change 9, 267–309.Google Scholar
  7. Houghton, J. T., Callander, B. A., Varney, S. K., 1992:Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge: Cambridge University Press, 200 pp.Google Scholar
  8. Hoyt, D. V., 1977: Percent of possible sunshine and the total cloud cover.Mon. Wea. Rev. 105, 648–652.Google Scholar
  9. Jones, P. A., 1991: Historical records of cloud cover and climate for Australia.Aust. Met. Mag. 39, 181–189.Google Scholar
  10. Karl, T. R., Kukla, G., Razuvayev, V. N., Changery, M. J., Quayle, R. G., Heim, R. R., Jr., Easterling, D. R., Fu, C. B., 1991: Global warming: Evidence for asymmetric diurnal temperature change.Geophys. Res. Lett. 18/12, 2253–2256.Google Scholar
  11. Karl, Th. R., Jones, Ph. D., Knight, R. W., Kukla, G., Plummer, N., Razuvayev, V., Gallo, K., Lindseay, J., Charlson, R. J., Peterson, Th. C., 1993: A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum and temperature.Bull. Amer. Meteor. Soc. 74, 1007–1023.Google Scholar
  12. Kaufmann, Y. J., Fraser, S., Mahoney, R. L., 1991: Fossil fuel and biomass burning effect on climate-heating or cooling.J. Climate 4, 578–588.Google Scholar
  13. Kaufmann, Y. J., Ming-Dah Chou, 1993: Model simulations of the competing climatic effects of SO2 and CO2.J. Climate 6, 1241–1252.Google Scholar
  14. Kukla, G., Karl, Th. R., 1993: Nighttime warming and the greenhouse effect.Environ. Sci. Technol. 27, 1468–1474.Google Scholar
  15. Lahmann, E., 1991: Luftverunreinigungen in Berlin. Literaturstudie über Immissionsmeßprogramme und deren Ergebnisse. Immissionsmeßergebnisse, 12, Sen. f. Stadtentw. u. Umweltschutz, Berlin.Google Scholar
  16. Michaels, P. J., Stooksbury, D. E., 1992: Global warming: A reduced threat?Bull. Amer. Meteor. Soc. 73/10, 1563–1577.Google Scholar
  17. Michaels, P. J., 1992:Sound and Fury. The Science and Politics of Global Warming. Washington D. C.: Cato Institute, 196 pp.Google Scholar
  18. Plantico, M. S., Karl, T. R., Kukla, G., Gavin, J., 1990: Is recent climate change across the United States related to rising levels of anthropogenic greenhouse gases?J. Geophys. Res. 95/D10, 16,617–16,637.Google Scholar
  19. Sinik, N., 1992: A local climatic model of the temperature-cloudiness relationship.Theor. Appl. Climatol. 46, 135–142.Google Scholar
  20. Weber, G.-R., 1990a: Spatial and temporal variations of sunshine in the Federal Republic of Germany.Theor. Appl. Climatol. 41, 1–9.Google Scholar
  21. Weber, G.-R., 1993: Emission und Immissionen von steinkohlenbergbauspezifischen Luftverunreinigungen. In: H. Wiggering (ed.)Steinkohlenbergbau — Steinkohle als Grundstoff, Energieträger und Umweltfaktor. Berlin: Verlag Ernst & Sohn, 158–170.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • G. R. Weber
    • 1
  1. 1.Gesamtverband des Deutschen SteinkohlenbergbausEssenGermany

Personalised recommendations