Polymer Mechanics

, Volume 5, Issue 6, pp 871–876 | Cite as

Statistical derivation of the equations of viscoelasticity of rubbery polymers for homogeneous finite deformations

  • T. N. Khazanovich


The statistical derivation of the equations of linear viscoelasticity [1, 2] is extended to the slow finite homogeneous deformations of rubbery polymers. It is shown with reference to a Gaussian subchain network model that the time correlation functions of the momentum fluxes (relaxation moduli) in the deformed and undeformed states are the same. The relations previously proposed on the basis of purely phenomenological considerations [15] are obtained for the viscous stresses in uniaxial tension. Comparison with experiment has shown that the proposed relations approximately describe the existing data on the stretching of elastomers in a certain region of finite strains.


Polymer Correlation Function Network Model Time Correlation Uniaxial Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    T. N. Khazanovich, PMM,28, 1123 (1964).Google Scholar
  2. 2.
    G. P. De Vault and J. A. McLennan, Phys. Rev.,A131, 724 (1965).Google Scholar
  3. 3.
    Yoh-Han Pao, J. Macromol. Sci. (Phys.),B1, 289 (1967).Google Scholar
  4. 4.
    J. A. McLennan, Phys. Fluids,4, 1319 (1961); Adv. Chem. Phys.,5, 261 (1963).Google Scholar
  5. 5.
    D. N. Zubarev, Dokl. Akad. Nauk SSSR, 140, 92 (1961);164, 537 (1965).Google Scholar
  6. 6.
    J. A. McLennan, Physica,32, 689 (1966).Google Scholar
  7. 7.
    T. N. Khazanovich, Uch. Zap. MGPI im. Potemkina,86, 193 (1960).Google Scholar
  8. 8.
    I. I. Gol'denblatt, Some Problems of the Mechanics of Deformable Bodies [in Russian], Moscow (1955).Google Scholar
  9. 9.
    V. A. Kargin and G. L. Slonimskii, Zh. Fiz. Khim.,23, 563 (1949).Google Scholar
  10. 10.
    H. M. James and E. Guth, J. Chem. Phys.,15, 669 (1947).Google Scholar
  11. 11.
    D. W. McCall, D. C. Douglass, and E. W. Anderson, J. Polym. Sci.,A1, 1709 (1963).Google Scholar
  12. 12.
    B. Zimm, J. Chem. Phys.,24, 269 (1956).Google Scholar
  13. 13.
    J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York (1961).Google Scholar
  14. 14.
    A. Nadai, Theory of Flow and Fracture of Solids, McGraw-Hill, New York (1950).Google Scholar
  15. 15.
    F. M. F. Badran, Mekhan. Polim., No. 4, 508 (1966).Google Scholar
  16. 16.
    B. Bernstein, E. A. Kearsley, and L. J. Zapas, Trans. Soc. Rheol.,7, 391 (1963).Google Scholar
  17. 17.
    L. J. Zapas and T. Craft, J. Res. Natl Bur. Stand.,69A, 541 (1965).Google Scholar
  18. 18.
    T. L. Smith, J. Polym. Sci.,20, 89 (1956).Google Scholar
  19. 19.
    W. Kuhn and O. Künzle, Helv. Chim. Acta,30, 839 (1947).Google Scholar
  20. 20.
    P. Mason, Trans. Farad. Soc.,55, 1461 (1959).Google Scholar
  21. 21.
    S. M. Gumbrell, L. Mullins, and R. S. Rivlin, Trans. Farad. Sco.,49, 1495 (1953).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • T. N. Khazanovich

There are no affiliations available

Personalised recommendations