Skip to main content
Log in

Mechanism of subthreshold defect formation in electron-thermal processes

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. V. Grishaev, A. P. Erastova, M. N. Korotkova, et al., “Study of the change in the α-Fe2O3 phase in electron-thermal fertilization processes,” Élektron. Tekh. Ser. 6. Materialy, No. 7(192) (1984).

  2. V. V. Grishaev, A. P. Erastova, B. M. Lebed', and I. I. Marchik, “Random homogenization of ferrite powders,” Elektron. Tekh. Ser. 6. Materialy, No. 10(183) (1983).

  3. V. V. Grishaev and B. M. Lebed', Élektron. Tekh. Ser. 6. Materialy, No. 1(200) (1985).

  4. Sh. A. Vakhidov, Radiation-Activated Process in Silicon [in Russian], Fan, Tashkent (1977).

    Google Scholar 

  5. V. S. Vavilov, A. E. Kiv, and O. R. Niyazova, Mechanisms of Defect Formation and Migration in Semiconductors [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  6. A. V. Vorob'ev and B. A. Kononov, Passage of Electrons through Matter [in Russian], Tomsk. Gos. Univ., Tomsk (1966).

    Google Scholar 

  7. I. B. Borovskii, Physical Fundamentals of X-Ray Spectral Analyses [in Russian], Izd. Mosk. Gos. Univ., Moscow (1956).

    Google Scholar 

  8. H. Kolbenstvedt, “Simple theory for K ionization by relativistic electrons,” J. Appl. Phys.,38, No. 12 (1967).

  9. S. M. Darbinyan and K. M. Ispiryan, K Ionization of Channelized Relativistic Particles [in Russian], Erevan Fiz. Inst., Erevan (1981).

    Google Scholar 

  10. E. S. Parilis, The Auger Effect [in Russian], Fan, Tashkent (1969).

    Google Scholar 

  11. V. A. Vinetskii and G. T. Kholodar', Radiation Physics of Semiconductors [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  12. J. Durup and R. Z. Plactzman, “Role of the Auger effect in the displacement of atoms in solids by ionizing radiation,” Disc. Faraday Soc.,31, No. 3 (1961).

  13. S. Dzhumanov, “Ionization mechanism of the formation of point defects in ionic crystals,” in: Radiation-Stimulated Phenomena in Oxygen-Containing Crystals and Glasses [in Russian], Fan, Tashkent (1978).

    Google Scholar 

  14. R. I. Garber and A. I. Fedorenko, “Focusing of atomic collisions in crystals,” Usp. Fiz. Nauk,83, No. 3 (1964).

  15. B. Kelly, Irradiation Damage of Solids, Pergamon, NY (1966).

    Google Scholar 

  16. A. A. Botaki, A. A. Vorobe'ev, and V. P. Ul'yanov, Radiation Physics of Ionic Crystals [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  17. V. V. Grishaev, A. P. Erastova, B. M. Lebed', et al., “Radiation-stimulated diffusion in oxide metals,” Izv. Akad. Nauk SSSR, Neorg. Mater.,24, No. 11 (1988).

  18. G. V. Samsonov, Handbook of the Physicochemical Properties of Oxides [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  19. N. P. Kaashnikov, Coherent Interaction of Charged Particles in Single Crystals [in Russian], Atomizdat, Moscow (1981).

    Google Scholar 

  20. I. Linkhard, “Effect of the crystal lattice on the motion of fast charged particles,” Usp. Fiz. Nauk,99, No. 2 (1969).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 10–15, January–February, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grishaev, V.V. Mechanism of subthreshold defect formation in electron-thermal processes. J Appl Mech Tech Phys 33, 8–12 (1992). https://doi.org/10.1007/BF00864493

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00864493

Keywords

Navigation