Advertisement

Propagation of a signal in a liquid with a continuous distribution of bubble sizes

  • S. L. Gavrilyuk
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Continuous Distribution Bubble Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. V. Iordanskii, “Equations of motion of a liquid containing gas bubbles,” Prikl. Mekh. Tekh. Fiz., No. 3 (1960).Google Scholar
  2. 2.
    B. S. Kogarko, “One-dimensional unsteady motion of a liquid with cavitation,” Dokl. Akad. Nauk SSSR,155. No. 4 (1964).Google Scholar
  3. 3.
    L. Van Wijngaarden, “Equations of motion for mixtures of liquid and gas bubbles,” J. Fluid Mech.,33, Part 3 (1968).Google Scholar
  4. 4.
    R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Nauka, Moscow (1987), Chaps. 1–2.Google Scholar
  5. 5.
    S. S. Kutateladze and V. E. Nakoryakov, Heat and Mass Transfer and Waves in Gas-Liquid Systems [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  6. 6.
    E. A. Zabolotskaya, “Nonlinear waves in liquids with gas bubbles,” in: Nonlinear Wave Processes, Vol. 18, Tr. IOFAN, Nauka, Moscow (1989).Google Scholar
  7. 7.
    V. Sh. Shagapov, “Structure of shock waves in a polydispersed mixture of liquid and gas bubbles,” Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaza, No. 6 (1976).Google Scholar
  8. 8.
    V. K. Kedrinskii, “Peculiarities of bubble spectrum behavior in cavitation zone,” Proc. Int. Symp. Ultrasonic-85, London (1985).Google Scholar
  9. 9.
    V. G. Gasenko and V. L. Izergin, “Nonlinear waves and stochastization in a. polydisper-sive gas-liquid mixture,” Trans. 11th Int. Symp. on Nonlinear Acoustics, Part II, Inst. of Fluid Dynamics, Novosibirsk (1987).Google Scholar
  10. 10.
    Y. Matsumoto, H. Nishikawa, and H. Ohashi, “Numerical simulation of wave phenomena in a bubbly liquid,” Proc. 17th ICTAM, Grenoble, France (1985).Google Scholar
  11. 11.
    V. L. Izergin, “Complex solitary waves in polydispersed gas-liquid mixtures,” Izv. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 1 (1989).Google Scholar
  12. 12.
    S. L. Gavrilyuk, “Existence, uniqueness, and stability of traveling waves in a poly-dispersed bubbly medium with dissipation,” Partial Differential Equations, Inst. Math., Novosibirsk (1989).Google Scholar
  13. 13.
    S. L. Gavrilyuk and S. A. Fil'ko, “Shock waves in polydispersed bubbly media with dissipation,” Prikl. Mekh. Tekh. Fiz., No. 5 (1991).Google Scholar
  14. 14.
    V. K. Kedrinskii, “Propagation of disturbances in a liquid containing gas bubbles,” Prikl. Mekh. Tekh. Fiz., No. 4 (1968).Google Scholar
  15. 15.
    D. D. Ryutov, “Analog of Landau damping in a problem of sound propagation in a liquid with gas bubbles,” Piz'ma Zh. Eksp. Teor. Fiz.,22, No. 9 (1975).Google Scholar
  16. 16.
    I. A. Kotel'nikov and G. V. Stupakov, “Nonlinear effects in the propagation of sound waves in liquids with gas bubbles,” Zh. Eksp. Teor. Fiz.,84, No. 3 (1983).Google Scholar
  17. 17.
    A. O. Maksimov, “Nonlinear damping of a sound wave in a liquid with gas bubbles,” Zh. Tekh. Fiz.,56, No. 1 (1986).Google Scholar
  18. 18.
    N. A. Gumerov, “Equations for the propagation of long waves in polydispersed suspensions and bubbly liquids without phase transitions,” VINITI' 1991, No. 02.9.10004824, Moscow (1991).Google Scholar
  19. 19.
    S. L. Gavrilyuk, “Asymptotic solution of the Cauchy problem for the equations of propagation of linear waves in a liquid with a continuous distribution of bubble sizes,” Preprint, Inst. Fluid Dynamics, Novosibirsk (1991).Google Scholar
  20. 20.
    N. V. Malykh and I. A. Ogorodnikov, “Structure of pressure pulses,” J. Phys.,40, No. 11 (1979).Google Scholar
  21. 21.
    M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1987).Google Scholar
  22. 22.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley Interscience, New York (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • S. L. Gavrilyuk
    • 1
  1. 1.Novosibirsk

Personalised recommendations