Journal of Applied Mechanics and Technical Physics

, Volume 17, Issue 5, pp 671–677 | Cite as

Computation of unsteady flow past a cylinder instantaneously set in motion

  • V. I. Kravchenko
  • Yu. D. Shevelev
  • V. V. Shchennikov


Mathematical Modeling Mechanical Engineer Industrial Mathematic Unsteady Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. Blasius, “Grenzschichten in Flüssigkeiten mit kleiner Reibung,” Z. Math. Phys.,56 (1908).Google Scholar
  2. 2.
    S. Goldstein and L. Rosenhead, “Boundary layer growth,” Proc. Cambridge Phil. Soc.,32, 392–401 (1936)Google Scholar
  3. 3.
    C.-Y. Wang, “The flow past a circular cylinder which is started impulsively from rest,” J. Math. Phys.,46, 195–202 (1967).Google Scholar
  4. 4.
    C.-Y. Wang, “Separation and stall of an impulsively started elliptic cylinder,” J. Appl. Mech.,34, 823–826 (1967).Google Scholar
  5. 5.
    R. B. Payne, “Calculations of unsteady viscous flow past a circular cylinder,” J. Fluid Mech.,4, 81–86 (1958).Google Scholar
  6. 6.
    M. Kawaguti and P. Jain, “Numerical study of a viscous fluid flow past a circular cylinder,” J. Phys. Soc Japan,21, 10 (1966).Google Scholar
  7. 7.
    J. S. Son and T. J. Hanratty, “Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500,” J. Fluid Mech.,35, Pt. 2, 369–386 (1969).Google Scholar
  8. 8.
    D. C. Thoman and A. A. Szewczyk, “Time-dependent viscous flow over a circular cylinder,” Phys. Fluids Suppl.,11 (1969).Google Scholar
  9. 9.
    S. C. R. Dennis and A. Staniford, “Numerical method for computing the initial stage of flow of viscous fluid past a cylinder,” in: Numerical Methods in Fluid Mechanics [Russian translation], Mir, Moscow (1973).Google Scholar
  10. 10.
    W. M. Collins and S. C. R. Dennis, “Flow past an impulsively started circular cylinder,” J. Fluid Mech.,60, Pt. 1, 105–127 (1973).Google Scholar
  11. 11.
    H. Schlichting, Boundary Layer Theory, 6th ed., McGraw-Hill (1968).Google Scholar
  12. 12.
    D. B. Ingham, “Note on the numerical solution for unsteady viscous flow past a circular cylinder,” J. Fluid Mech.,31, 815–818 (1968).Google Scholar
  13. 13.
    G. K. Batchelor, Introduction to Fluid Dynamics, Cambridge University Press (1967).Google Scholar
  14. 14.
    E. L. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics, Prentice-Hall, Englewood Cliffs, New Jersey (1966).Google Scholar
  15. 15.
    S. K. Godunov and V. S. Ryaben'kii, Introduction to the Theory of Difference Schemes [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  16. 16.
    L. Woods, “Note on the numerical solution of a fourth order differential equation,” Aeron. Quart., No. 5 (1954).Google Scholar
  17. 17.
    S. Taneda, Visualization Experiments on Unsteady Viscous Flows around Cylinders and Plates, Prep. IUTAM Symposium on Unsteady Boundary Layers, Laval University, Quebec, Canada (May, 1971).Google Scholar
  18. 18.
    V. I. Kravchenko, Yu. D. Shevelev, and V. V. Shchennikov, Numerical Investigation of Flow of Viscous Incompressible Fluid past a Cylinder Instantaneously Set in Motion [in Russian], Preprint No. 37, Inst. Prikl. Mekh. Akad. Nauk SSSR (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • V. I. Kravchenko
    • 1
  • Yu. D. Shevelev
    • 1
  • V. V. Shchennikov
    • 1
  1. 1.Moscow

Personalised recommendations