Advertisement

Journal of engineering physics

, Volume 36, Issue 5, pp 555–558 | Cite as

Separation of non-newtonian liquids by thermal diffusion

  • A. A. Tubin
  • Yu. S. Sorokin
Article
  • 16 Downloads

Abstract

A transport equation has been derived for a mixture of non-Newtonian liquids showing power-law flow; the optimum separation conditions in a thermal-diffusion column in the presence of parasitic convection have been defined.

Keywords

Convection Statistical Physic Thermal Diffusion Transport Equation Separation Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. R. Sergienko, D. I. Érnepesov, et al., Dokl. Akad. Nauk SSSR,190, No. 5 (1970).Google Scholar
  2. 2.
    R. Grasselli, G. R. Brown, and C. E. Plymale, Chem. Eng. Prog.,57, No. 5 (1961).Google Scholar
  3. 3.
    M. M. Kusakov, A. Yu. Koshevnik, et al., Dokl. Akad. Nauk SSSR,158, No. 5 (1964).Google Scholar
  4. 4.
    C. Jones and W. Furry, Isotope Separation by Thermal Diffusion [Russian translation], IL, Moscow (1947).Google Scholar
  5. 5.
    Z. P. Shul'man, Convective Heat and Mass Transport in Rheologically Complex Liquids [in Russian], Énergiya, Moscow (1975).Google Scholar
  6. 6.
    G. D. Rabinovich, R. Ya. Gurevich, and G. I. Bobrova, Separation of Liquid Mixtures by Thermal Diffusion [in Russian], Nauka i Tekhnika, Minsk (1971).Google Scholar
  7. 7.
    I. G. Semakin, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1972).Google Scholar
  8. 8.
    G. D. Rabinovich and R. Ya. Gurevich, Inzh.-Fiz. Zh.,22, No. 5 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. A. Tubin
    • 1
  • Yu. S. Sorokin
    • 1
  1. 1.Moscow Engineering Physics InstituteUSSR

Personalised recommendations