Skip to main content
Log in

A 1-D modelling of climatic and chemical effects of greenhouse gases

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

A coupled 1-D time-dependent radiative-convective-photochemical diffusion model which extends from the surface to 60 km is used to investigate the potential impact of greenhouse trace gas emissions on long-term changes in global climate, atmospheric ozone and surface UV-B radiation, taking into accoont the influence of aerosol loading into the atmosphere from major volcanic eruptions, of thermal inertia of the upper mixed layer of the ocean and of other radiativephotochemical feedback mechanisms. Experiments are carried out under global and annual average insolation and cloudiness conditions. The transient calculations are made for three different growth scenarios for increase in trace gas concentrations. Scenario 1, which begins in 1850, uses the best estimate values for future trace gas concentrations of CO2, CH4, N2O, CFC-11, CFC-12 and tropospheric O3, based on current observational trends. Scenarios 2 and 3, which begin in 1990, assume lower and upper ranges, respectively, of observed growth rates to estimate future concentrations.

The transient response of the model for Scenario 1 suggests that surface warming of the ocean mixed layer of about 1 K should have taken place between 1850 and 1990 due to a combined increase of atmospheric CO2 and other trace gases. For the three scenarios considered in this study, the cumulative surface warming induced by all major trace gases for the period 1850 to 2080 ranges from 2.7 K to 8.2 K with the best estimate value of 5 K. The results indicate that the direct and the indirect chemistry-climate interactions of non-CO2 trace gases contribute significantly to the cumulative surface warming (up to 65% by the year 2080). The thermal inertia of a mixed layer of the ocean is shown to have the effect of delaying equilibrium surface warming by almost three decades with an e-folding time of about 5 years. The volcanic aerosols which would result from major volcanic eruptions play a significant role by interrupting the long-term greenhouse surface warming trend and replacing it by a temporary cooling on a time scale of a decade or less. Furthermore, depending on the scenario used, a reduction in the net ozone column could result in an increase in the solar UV-B radiation at the surface by as much as 300% towards the end of 21st century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angell, J. K., 1988: Impact of El Nino on the delineation of tropospheric cooling due to volcanic eruptions.J. Geophys. Res. 93, 3697–3704.

    Google Scholar 

  • Blanchet, J.-P., 1979: Aerosol contributions of atmospheric heating. M.Sc. thesis, Dept. of Meteorology, McGill University, Montreal, Que., Canada.

    Google Scholar 

  • Boughner, R. E., 1978: The effect of increased carbon dioxide concentrations on stratospheric ozone.J. Geophys. Res. 83, 1326–1332.

    Google Scholar 

  • Brasseur, G., Rudder, A. D., Tricott, C., 1985: Stratospheric response to chemical perturbations.J. Atmos. Chem. 3, 261–288.

    Google Scholar 

  • Bruehl, Ch., Crutzen, P. J., 1984: A radiative convective model to study the sensitivity of climate and chemical composition to a variety of human activities. In: Ghazi, A. (ed.),Proceedings of a Working Party Meeting, Brussels. 85–94.

  • Burch, D. E., Grynak, D., Singleton, E. B., France, W. L., Williams, D., 1962: Infrared absorption by CO2, H2O and minor atmospheric constituents. AFCRL-62-688, Ohio State University, Contract #AF19(604)-2633.

  • Callis, L. B., Natarajan, M., Boughner, R. E., 1983: On the relationship between the greenhouse effect, atmospheric chemistry and species distributions.J. Geophys. Res. 88, 1401–1426.

    Google Scholar 

  • Chandrasekar, S., 1950:Radiation Transfer. London, England: Oxford University Press, 436 pp.

    Google Scholar 

  • Crutzen, P. J., Isaksen, I. A., McAfee, J. R., 1978: The impact of the chlorocarbon industry on the ozone layer.J. Geophys. Res. 83, 345–363.

    Google Scholar 

  • DeMore, W. B., Margitan, J. J., Molina, M. J., Watson, R. T., Golden, D. M., Hamson, R. F., Kurylo, M. J., Howard, C. J., Ravishankera, A. J., 1985: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling. JPL Publication 85-37, Calif. Inst. Technol., Pasedena, Calif.

  • Goody, R. M., 1964:Atmospheric Radiation. Theoretical Basis. London, England: Oxford University Press, 436 pp.

    Google Scholar 

  • Hansen, J., Lacis, L., Prather, M., 1989: Greenhouse effect of chlorofluorocarbons and other trace gases.J. Geophys. Res. 94, 16417–16421.

    Google Scholar 

  • Hansen, J., Lacis, A., 1990: Sun and dust versus greenhouse gases: an assessment of their relative roles in global climate change.Nature 346, 713–719.

    Google Scholar 

  • Hitschfeld, W., Houghton, J. T., 1961: Radiative transfer in the lower stratosphere due to the 9.6µ band of ozone,Quart. J. Roy. Meteor. Soc. 87, 562–577.

    Google Scholar 

  • Hoffert, M. I., Callegari, A. J., Hsieh, C. T., 1980: The role of deep-sea heat storage in the secular response to climate forcing.J. Geophys. Res. 85, 6667–6679.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. J., Ephraums J. J. (eds.), 1990:Climate Change. The IPCC Scientific Assessment. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Johnston, H. S., 1974: Simplified chemistry model for the perturbed stratosphere. CIAP Monograph 3, U.S. Dept. of Transportation, Washington, D.C.

    Google Scholar 

  • Joseph, J. H., Wiscombe, W. J., Weiman, J. A., 1976: The delta-Eddington approximation for radiation flux transfer.J. Atmos. Sci. 33, 2452–2459.

    Google Scholar 

  • Knox, J. L., Higuchi, K., Shabbar, A., Sargent, N. E., 1988: Secular variation of northern hemisphere 50 kPa geopotential height.J. Climate 1, 500–511.

    Google Scholar 

  • Kunde, V. G., Maguire, W. C., 1974: Direct integration transmittance model.J. Quant. Spectrosc. Rad. Transfer 14, 803–817.

    Google Scholar 

  • Kuo, H. L., 1977: Analytical infrared transmissivities of the atmosphere.Beitr. Phys. Atmos. 50, 331–349.

    Google Scholar 

  • Lal, M., Ramanathan, V., 1984: The effect of moist convection and water vapor radiative processes on climate sensitivity.J. Atmos. Sci. 41, 2238–2249.

    Google Scholar 

  • Lelieveld, J., Crutzen, P. J., 1992: Indirect chemical effects of methane on climate warming.Nature 355, 339–341.

    Google Scholar 

  • Machida, T., 1993: A study on concentration variations of grenhouse gases in ancient air using ice core analysis. Ph.D. Thesis, Tohoku University, Sendai, Japan, 147 pp.

    Google Scholar 

  • Manabe, S., Strickler, R. F., 1964: Thermal equilibrium of the atmosphere with a convective adjustment.J. Atmos. Sci. 21, 361–385.

    Google Scholar 

  • Ramanathan, V., 1980: Climatic effects of anthropogenic trace gases. In: Bach, W., Pankrath, J., Williams, J. (eds.)Interactions of Energy and Climate. Dordrecht, Holland: D. Reidel, pp. 269–280.

    Google Scholar 

  • Ramanathan, V., Callis, L. B., Boughner, R. E., 1976: Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric concentrations of ozone and nitrogen dioxide.J. Atmos. Sci. 33, 1092–1112.

    Google Scholar 

  • Ramanathan, V., Singh, H. B., Cicerone, R. J., Kiehl, J. T., 1985: Trace gas trends and their potential role in climate change.J. Geophys. Res. 90, 5547–5566.

    Google Scholar 

  • Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R., Schlesinger, M., 1987: Climate chemical interactions and effects of changing atmospheric trace gases.Rev. Geophys. 25, 1441–1482.

    Google Scholar 

  • Ramaswamy, V., Schwarzkopf, M. D., Shine, K. P., 1992: Radiative forcing of climate from halocarbon-induced global stratospheric ozone loss.Nature 355, 810–812.

    Google Scholar 

  • Schneider, S. H., Dickinson, R. E., 1974: Climate modeling.Rev. Geophys. Space Phys. 12, 447–493.

    Google Scholar 

  • Vupputuri, R. K. R., 1984: Processes governing the global energy balance and the effect of CO2 and O3 perturbations on atmospheric and surface temperature. Canadian Climate Centre Report No. 84-8, Atmospheric Environment Service, Downsview, Ontario, Canada.

    Google Scholar 

  • Vupputuri, R. K. R., 1985: The effect of ozone photochemistry on atmospheric and surface temperature changes due to increased CO2, N2O, CH4 and volcanic aerosols in the atmosphere.Atmosphere-Ocean 23, 359–374.

    Google Scholar 

  • Vupputuri, R. K. R., 1988: Potential effects of anthropogenic trace gas emissions on atmospheric ozone and temperature structure and surface climate.Atmos. Environ. 22, 2809–2818.

    Google Scholar 

  • Vupputuri, R. K. R., 1992: The Tambora eruption in 1815 provides a test on possible global climatic and chemical perturbations in the past.Natural Hazards 5, 1–16.

    Google Scholar 

  • Wang, W. C., Yung, Y. L., Lacis, A., Mo, T., Hansen, J., 1976: Greenhouse effects due to man-made perturbations of trace gases.Science 194, 685–690.

    Google Scholar 

  • Wang, W. C., Sze, N. D., 1980: Coupled effects of atmospheric N2O and O3 on the earth's climate.Nature 286, 589.

    Google Scholar 

  • Wang, W. C., Wuebbles, D. J., Washington, W. M., Isaacs, R. G., Molnar, G., 1986: Trace gases and other potential perturbations to global climate.Rev. Geophys. 24, 110–140.

    Google Scholar 

  • Wigley, T. M. L., Raper, S. C. B., 1987: Thermal expansion of sea water associated with global warming.Nature 330, 127–131.

    Google Scholar 

  • Wigley, T. M. L., Raper, S. C. B., 1992: Implications for climate and sea level of revised IPCC emissions scenarios.Nature 357, 293–300.

    Article  Google Scholar 

  • WMO, 1984: The Intercomparison of Radiative Codes in Climate Models (ICRCCM), WCP-93.

  • Wuebbles, D. J., Luther, F. M., Penner, J. E., 1983: Effect of coupled anthropogenic perturbations on stratospheric ozone.J. Geophys. Res. 88, 1433–1443.

    Google Scholar 

  • Zhong, W., Haigh, J. D., Pyle, J. A., 1993: Greenhouse gases in the stratosphere.J. Geophys. Res. 98, 2995–3004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 14 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vupputuri, R.K.R., Higuchi, K. & Hengeveld, H.G. A 1-D modelling of climatic and chemical effects of greenhouse gases. Theor Appl Climatol 52, 151–167 (1995). https://doi.org/10.1007/BF00864039

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00864039

Keywords

Navigation