Biophysics of structure and mechanism

, Volume 2, Issue 2, pp 119–137 | Cite as

Optical and electrical studies on dansyllysine-valinomycin in thin lipid membranes

  • G. W. Pohl
  • W. Knoll
  • B. F. Gisin
  • G. Stark


Dansyllysine-valinomycin, a fluorescent analogue of the ionophore valinomycin was synthesized and incorporated into black lipid membranes. Its concentration inside the membrane was measured fluorometrically and was also determined from electrical relaxation experiments, which were analyzed on the basis of a previously proposed carrier model. The results of both methods agreed within less than one order of magnitude. This appears satisfactory in view of the sources of error inherent in both procedures.

A conductance increment per carrier molecule of about 3 · 10−17 Ω−1 was obtained for dansyllysine-valinomycin in diphytanoyllecithin membranes at 25‡ C and 1M RbCl in the aqueous phases. This is about 400 times smaller compared to unmodified valinomycin in monoolein membranes. The difference is mainly caused by the change in the membrane properties and to a smaller extent by the structural modification of the carrier.

Key words

Valinomycin Lipid membranes Fluorescence Relaxation methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alamuti, N., LÄuger, P.: Fluorescence of thin chlorophyll membranes in aqueous phase. Biochim. biophys. Acta (Amst.)211, 362–364 (1970)Google Scholar
  2. Bamberg, E., LÄuger, P.: Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membr. Biol.11, 177–194 (1973)Google Scholar
  3. Benz, R., LÄuger, P.: Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique. J. Membr. Biol.27, 171–191 (1976)Google Scholar
  4. Benz, R., Stark, G., Janko, K., LÄuger, P.: Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature. J. Membr. Biol.14, 339–364 (1973)Google Scholar
  5. Benz, R., Stark, G.: Kinetics of macrotetrolide-induced ion transport across lipid bilayer membranes. Biochim. biophys. Acta (Amst.)382, 27–40 (1975)Google Scholar
  6. Cherry, R. J., Kwan Hsu, Chapman, D.: Absorption spectroscopy of chlorophyll in bimolecular lipid membranes. Biochem. biophys. Res. Commun.43, 351–358 (1971)Google Scholar
  7. Conti, F., Malerba, F.: Fluorescence signals in ANS-stained lipid bilayers under applied potentials. Biophysik8, 326–332 (1972)Google Scholar
  8. Conti, F., Fioravanti, R., Malerba, F., Wanke, E.: A comparative analysis of extrinsic fluorescence in nerve membranes and lipid bilayers. Biophys. Struct. Mechanism1, 27–45 (1974)Google Scholar
  9. Feldberg, S. W., Kissel, G.: Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers. J. Membr. Biol.20, 269–300 (1975)Google Scholar
  10. Gambale, F., Gliozzi, A., Robello, M.: Determination of rate constants in carrier-mediated diffusion through lipid bilayers. Biochim. biophys. Acta (Amst.)330, 325–334 (1973)Google Scholar
  11. Gisin, B. F., Merrifield, R. B., Tosteson, B. C.: Solid-phase synthesis of the cyclododecadepsipeptide valinomycin. J. Amer. chem. Soc.91, 2691–2695 (1969)Google Scholar
  12. Hladky, S. B., Haydon, D. A.: Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim. biophys. Acta (Amst.)274, 294–312 (1972)Google Scholar
  13. Hladky, S. B.: The effect of stirring on the flux of carriers into black lipid membranes. Biochim. biophys. Acta (Amst.)307, 261–269 (1973)Google Scholar
  14. Hong, F. T., Mauzerall, D.: Photoemf at a single membrane-solution interface specific to lipid bilayers containing magnesium porphyrins. Nature (Lond.) New Biol.240, 154–155 (1972)Google Scholar
  15. Knoll, W., Stark, G.: An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes. J. Membr. Biol.25, 249–270 (1975)Google Scholar
  16. Kolb, H.-A., LÄuger, P., Bamberg, E.: Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels. J. Membr. Biol.20, 133–154 (1975)Google Scholar
  17. LÄuger, P., Stark, G.: Kinetics of carrier-mediated ion transport across lipid bilayer membranes. Biochim. biophys. Acta (Amst.)211, 458–466 (1970)Google Scholar
  18. Laprade, R., Ciani, S. M., Eisenman, G., Szabo, G.: The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpretation. In: Membranes. A series of advances, vol. 3 (G. Eisenman, ed.), pp. 127–214. New York: Marcel Dekker 1975Google Scholar
  19. Lea, E. J. A., Gulik-Krzywicki, T.: Fluorescence of bimolecular phospholipid membranes. Nature (Lond.) New Biol.237, 95–96 (1972)Google Scholar
  20. Merrifield, R. B.: Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Amer. chem. Soc.85, 2149–2154 (1963)Google Scholar
  21. Pohl, G. W.: Energy transfer in black lipid membranes. Biochim. biophys. Acta (Amst.)288, 248–253 (1972)Google Scholar
  22. Pohl, G. W., Stark, G., Trissl, H. W.: Interaction of liposomes with black lipid membranes. Biochim. biophys. Acta (Amst.)318, 478–481 (1973)Google Scholar
  23. Pohl, G. W., Teissié, J.: The use of fluorescent probes for studying the interaction of proteins with black lipid membranes. Z. Naturforsch.30c, 147–151 (1975)Google Scholar
  24. Requena, J., Haydon, D. A., Hladky, S. B.: Lenses and the compression of black lipid membranes by an electric field. Biophys. J.15, 77–81 (1975)Google Scholar
  25. Sargent, D. F.: Voltage jump/capacitance relaxation studies of bilayer structure and dynamics. J. Membr. Biol.23, 227–247 (1975)Google Scholar
  26. Stark, G., Ketterer, B., Benz, R., LÄuger, P.: The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Biophys. J.11, 981–994 (1971)Google Scholar
  27. Stark, G., Benz, R.: The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin. J. Membr. Biol.5, 133–153 (1971)Google Scholar
  28. Steinemann, A., Alamuti, N., Brodmann, W., Marschall, A., LÄuger, P.: Optical properties of artificial chlorophyll membranes. J. Membr. Biol.4, 284–294 (1971)Google Scholar
  29. Trissl, H. W.: Studies on the incorporation of fluorescent pigments into bilayer membranes. Biochim. biophys. Acta (Amst.)367, 326–337 (1974)Google Scholar
  30. Veatch, W. R., Mathies, R., Eisenberg, M., Stryer, L.: Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. J. molec. Biol.99, 75–92 (1975)Google Scholar
  31. Yguerabide, J., Stryer, L.: Fluorescence spectroscopy of an oriented model membrane. Proc. nat. Acad. Sci. (Wash.)68, 1217–1221 (1971)Google Scholar
  32. Zingsheim, H. P., Haydon, D. A.: Fluorescence spectroscopy of planar lipid membranes. Biochim. biophys. Acta (Amst.)298, 755–768 (1973)Google Scholar
  33. Zingsheim, H. P., Neher, E.: The equivalence of fluctuation analysis and chemical relaxation measurements: A kinetic study of pore formation in thin lipid membranes. Biophys. Chem.2, 197–207 (1974)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • G. W. Pohl
    • 1
  • W. Knoll
    • 1
  • B. F. Gisin
    • 2
  • G. Stark
    • 1
  1. 1.Fachbereich BiologyUniversity of KonstanzKonstanzFederal Republic of Germany
  2. 2.The Rockefeller UniversityNew YorkUSA

Personalised recommendations