Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 65, Issue 3, pp 890–895 | Cite as

Applying methods of numerical modeling to optimize a plasma burner of atmospheric pressure

  • S. M. Perminov
  • V. N. Perminova
  • A. V. Shakhanov
Article
  • 29 Downloads

Abstract

The shape of a plasma burner is optimized by the methods of numerical modeling. Vortex-free flow is created in the burner merely at the expense of selecting the external tube profile rather than by introduction of additional protective flows into the burner.

Keywords

Burner Statistical Physic Numerical Modeling Expense External Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Th. Hunlich, H. Bauch, and R. Th. Kersten, J. Opt. Commun.,8, No. 4, 122–129 (1987).Google Scholar
  2. 2.
    Yu. P. Raizer, Physics of a Gaseous Discharge [in Russian], Moscow (1987).Google Scholar
  3. 3.
    J. Mostaghimi, P. Proulx, and M. J. Boulos, J. Appl. Phys.61, No. 5, 1753–1760 (1987).Google Scholar
  4. 4.
    A. S. Biryukov, K. M. Golant, E. M. Dianov, et al., Pis'ma Zh. Tekh. Fiz.,17, No. 5, 80–84 (1991).Google Scholar
  5. 5.
    S. A. Vasiliev, K. M. Golant, E. M. Dianov, et al., Experimental Apparatus for the Emission Spectroscopy of a Superhigh-Frequency Discharge of Atmospheric Pressure [in Russian], Preprint of IOFAN, No. 34, Moscow (1991).Google Scholar
  6. 6.
    J. F. Thompson and Z. U. A. Warsi, Numerical Grid Generation, Foundation and Application, Amsterdam, North Holland (1985), p. 551.Google Scholar
  7. 7.
    A. I. Tolstykh, Zh. Vych. Mat. Mat. Fiz.,21, No. 2, 339–354 (1981).Google Scholar
  8. 8.
    O. M. Belotserkovskii, Numerical Modeling in Continuum Mechanics [in Russian], Moscow (1984).Google Scholar
  9. 9.
    A. George and J. Lew, Numerical Solution of Large Sparse Systems of Equations [Russian translation], Moscow (1984), p. 333.Google Scholar
  10. 10.
    D. S. Kercaw, J. Comput. Phys.,26, No. 1, 43–65 (1978).Google Scholar
  11. 11.
    G. M. Kobel'kov, Vestnik MGU, No. 1, 15–22 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • S. M. Perminov
  • V. N. Perminova
  • A. V. Shakhanov

There are no affiliations available

Personalised recommendations