Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 66, Issue 2, pp 181–190 | Cite as

Numerical modeling of nonisothermal moisture transfer in biological colloidal porous materials

  • C. Strumillo
  • N. N. Grinchik
  • P. S. Kuts
  • P. V. Akulich
  • I. Zbicinski
Article
  • 23 Downloads

Abstract

The authors derive and substantiate a system of equations of heat and moisture transfer in colloidal capillary-porous undersaturated media with account for the mutual effect of the vapor and liquid pressure, determined by the contribution of surface forces, and the temperature on the rate of interphase mass transfer and the thermocapillary flows. Examples are given of the numerical calculation of evolution of the moisture content and temperature fields and the kinetic dependences in a wide moisture content range for materials of biological origin, namely, yeast, soil. A comparison is made with experimental data.

Keywords

Mass Transfer Statistical Physic Numerical Modeling Numerical Calculation Temperature Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Luikov, Drying Theory [in Russian], Moscow (1968).Google Scholar
  2. 2.
    V. V. Rachinskii, Introduction to the General Theory of Sorption Dynamics and Chromatography [in Russian], Moscow (1963).Google Scholar
  3. 3.
    G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of Unsteady-State Liquid and Gas Filtration [in Russian], Moscow (1972).Google Scholar
  4. 4.
    S. Brunauer, The Adsorption of Gases and Vapors, Princeton, NJ (1945).Google Scholar
  5. 5.
    Yu. M. Vol'fkovich, Élektrokhimiya,16, No. 11, 5–31 (1980).Google Scholar
  6. 6.
    J. Karger, Surface Science, No. 592, 749–754 (1976).Google Scholar
  7. 7.
    M. C. Leverett, Trans. AIME,142, 151 (1941).Google Scholar
  8. 8.
    N. N. Grinchik, Transport Processes in Media, Electrolytes, and Membranes [in Russian], Minsk (1991).Google Scholar
  9. 9.
    N. E. Gorobtsova, in: Heat and Mass Transfer-VI, Proc. of the VI All-Union Conf. on Heat and Mass Transfer [in Russian], Vol. VII, Minsk (1990), pp. 60–63.Google Scholar
  10. 10.
    N. I. Gel'perin, V. G. Ahshnein, and V. B. Kvasha, Fundamentals of Fluidization Technology [in Russian], Moscow (1967).Google Scholar
  11. 11.
    A. S. Ginzburg, M. A. Gromov, and G. I. Krasovskaya, Thermophysical Characteristics of Foodstuffs [in Russian], Moscow (1980).Google Scholar
  12. 12.
    V. M. Abrashin (ed.), Computer Software [in Russian], Vol. 11, Minsk (1988), p. 163.Google Scholar
  13. 13.
    W. Kaminskii and C. Strumillo, Chemical Engineering and Processing, No. 31, 125–129 (1992).Google Scholar
  14. 14.
    S. V. Nerpin and A. F. Chudnovskii, Energy and Mass Transfer in a Plant-Soil-Air System [in Russian], Leningrad (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • C. Strumillo
  • N. N. Grinchik
  • P. S. Kuts
  • P. V. Akulich
  • I. Zbicinski

There are no affiliations available

Personalised recommendations