Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 65, Issue 5, pp 1091–1096 | Cite as

Modeling of silicon diffusion in gallium arsenide

1. Microscopic mechanisms of diffusion and a model of the transitions of silicon atoms between crystal sublattices
  • O. I. Velichko
  • A. A. Egorov
  • S. K. Fedoruk
Article

Abstract

A model is developed and a study is performed for amphoteric diffusion of silicon in gallium arsenide. A comparison of predictions with experimental data indicated adequacy of the devised model and high efficiency of the numerical method for solving the diffusion equation.

Keywords

Silicon Experimental Data Statistical Physic Gallium Diffusion Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Einspruck and W. Wissman (eds.), Gallium Arsenide in Microelectronics [Russian translation], Moscow (1988).Google Scholar
  2. 2.
    D. B. DiLorenzo and J. J. Candeluol (eds.), Field-Effect Transistors Operating on Gallium Arsenide. Operating Principles and Manufacturing Process [Russian translation], Moscow (1988).Google Scholar
  3. 3.
    S. Zee, Physics of Semiconductor Instruments [Russian translation], Moscow (1984), Book 1.Google Scholar
  4. 4.
    S. Zee, Physics of Semiconductor Instruments [Russian translation], Moscow (1984), Book 2.Google Scholar
  5. 5.
    A. V. Chernyaev, Method of Ion Implantation in the Technology of Instruments and Integrated Microcircuits Operating on Gallium Arsenide [in Russian], Moscow (1990).Google Scholar
  6. 6.
    D. Miller (ed.), Modeling of Semiconductor Instruments and Technological Processes. Recent Advances [Russian translation], Moscow (1989).Google Scholar
  7. 7.
    S. Salakas and Z. Yanushkyavichus, Point Defects in Semiconductor Compounds [in Russian], Vilnius (1988).Google Scholar
  8. 8.
    J.-L. Lee, K.-H. Shim, J. S. Kim, et al., J. Appl. Phys.65, No. 1, 396–397 (1989).Google Scholar
  9. 9.
    D. G. Deppe, N. Jr. Holonyak, W. E. Piano, et al., Appl. Phys. Lett.,52, No. 2, 129–131 (1988).Google Scholar
  10. 10.
    T. Y. Tan and U. Gösete, Mater. Sci. Eng.,B1 No. 1, 47–65 (1988).Google Scholar
  11. 11.
    D. G. Deppe, N. Jr. Holonyak, W. E. Piano, et al., J. Appl. Phys.,64, No. 4, 1838–1844 (1988).Google Scholar
  12. 12.
    D. G. Deppe, N. Jr. Holonyak, F. A. Kish, and J. E. Baker, Appl. Phys. Lett.,50, No. 15, 998–1000 (1987).Google Scholar
  13. 13.
    J. J. Murray, M. D. Deal, and D. A. Stevenson, Appl. Phys. Lett.,56, No. 5, 472–474 (1990).Google Scholar
  14. 14.
    U. M. Gösele, Festkorper Probleme XXVI (1986), pp. 89–112.Google Scholar
  15. 15.
    F. Hyuga, J. Appl. Phys.,64, No. 8, 3880–3884 (1988).Google Scholar
  16. 16.
    R. A. Morrow, J. Appl. Phys.,64, No. 4, 1889–1896 (1988).Google Scholar
  17. 17.
    A. Goltzene et al., Phys. Stat. Solid: (b),123, No. 2, K125-K128 (1984).Google Scholar
  18. 18.
    H. J. Bardeleben and J. C. Bourgoin, Phys. Rev. B,33, No. 4, 2890–2892 (1986).Google Scholar
  19. 19.
    J. C. Bourgoin, von H. J. Bardeleben, and D. Stievenard, J. Appl. Phys.,64, No. 9, R65-R91 (1988).Google Scholar
  20. 20.
    V. V. Emtsev and T. V. Mahovets, Impurities and Point Defects in Semiconductors [in Russian], Moscow (1981).Google Scholar
  21. 21.
    V. I. Chebotin, Physical Chemistry of the Solid State [in Russian], Moscow (1982).Google Scholar
  22. 22.
    V. A. Labunov and O. I. Velichko, Inzh.-Fiz. Zh.,57, No. 5, 805–810 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • O. I. Velichko
  • A. A. Egorov
  • S. K. Fedoruk

There are no affiliations available

Personalised recommendations