Skip to main content
Log in

Regulation of cell function by extracellular matrix

  • Invited Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The extracellular matrix (ECM) provides structural support and adhesive substrates for the body tissues. Recent advances in our understanding of the biology of matrix indicate that the ECM also plays a significant role in regulating the behavior of cells. Matrix proteins engender changes in cell shape and movement, bind growth factors, and facilitate cell-cell and cell-matrix interactions. Matrix-induced differentiation results from multiple stimuli that include: tensile forces on the cell, cytokine- or growth factor-mediated stimulation, and interaction with bioactive domains of matrix glycoproteins. Because these signals are important determinants of cell behavior, pharmacological manipulation of cell-matrix interactions may offer a valuable new approach to disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rest M van der, Garrone R (1991) Collagen family of proteins. FASEB J 5: 2814–2823

    PubMed  Google Scholar 

  2. Yurchenco PD, Schnittny JC (1990) Molecular architecture of basement membranes. FASEB J 4: 1577–1590

    PubMed  Google Scholar 

  3. Hardingham TE, Fosang AJ (1992) Proteoglycans; many forms and many functions. FASEB J 6: 861–870

    PubMed  Google Scholar 

  4. Beck K, Hunter I, Engel J (1990) Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J 4: 148–160

    PubMed  Google Scholar 

  5. Vukicevic S, Kleinman HK, Luyten FP, Roberts A, Roche NS, Reddi AH (1992) Identification of multiple growth factors in basement membrane matrigel suggest caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202: 1–8

    PubMed  Google Scholar 

  6. Vlodavsky I, Bar-Shavit R, Korner G, Fuks Z (1992) Extracellular matrix-bound growth factors, enzymes and plasma proteins. In: Rohrbach DH, Timpl R (eds) Molecular and cellular aspects of basement membranes. Academic Press, Orlando (in press)

    Google Scholar 

  7. Schnaper HW, Grant DS, Fridman R, Hoyhtya M, Bird RE, Fuerst TR, Kleinman HK (1991) 72-kD type IV collagenase activity in an in vitro model of endothelial cell differentiation (abstract). J Cell Biol 115: 117a

    Google Scholar 

  8. Hay ED (1991) Cell biology of extracellular matrix, 2nd edn. Plenum, New York

    Google Scholar 

  9. Ingber DE, Folkman J (1989) Mechanicochemical switching between growth and differentiation during fibroblast growth factorstimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109: 317–330

    PubMed  Google Scholar 

  10. Rodriguez-Boulan E, Nelson WJ (1989) Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718–725

    Google Scholar 

  11. Cooper AR, MacQueen HA (1983) Subunits of laminin are differentially synthesized in mouse eggs and early embryos. Dev Biol 96: 467–471

    PubMed  Google Scholar 

  12. Klein G, Langegger M, Timpl R, Ekblom P (1988) Role of laminin A chain in the development of epithelial cell polarity. Cell 55: 331–341

    PubMed  Google Scholar 

  13. Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273: 345–349

    PubMed  Google Scholar 

  14. Gospodarowicz D, Greenburg G, Birdwell CR (1978) Determination of cellular shape by extracellular matrix and its correlation with the control of cellular growth. Cancer Res 38: 4155–4171

    PubMed  Google Scholar 

  15. Mecham RP (1991) Receptors for laminin on mammalian cells. FASEB J 5: 2538–2546

    PubMed  Google Scholar 

  16. Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules FASEB J 4: 2868–2880

    PubMed  Google Scholar 

  17. Vandenberg P, Kern A, Ries A, Luckenbill-Edds L, Mann K, Kuhn K (1991) Characterization of a type IV collagen major cell binding site with affinity to the α1β1 and the α2β1 integrins. J Cell Biol 113: 1475–1483

    PubMed  Google Scholar 

  18. Clement B, Segui-Real B, Hassell JR, Martin GR, Yamada Y (1989) Identification of a cell surface-binding protein for the core protein of the basement membrane proteoglycan. J Biol Chem 264: 12467–12471

    PubMed  Google Scholar 

  19. Getzenberg RH, Pienta KJ, Huang EYW, Murphy BC, Coffey DS (1991) Modifications of the intermediate filament and nuclear matrix networks by the extracellular matrix. Biochem Biophys Res Commun 179: 340–344

    PubMed  Google Scholar 

  20. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP (1992) Primary structure of the dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355: 696–702

    PubMed  Google Scholar 

  21. Madri JA, Basson MD (1992) Extracellular matrix-cell interactions: dynamic modulators of cell, tissue and organism structure and function. Lab Invest 66: 519–521

    PubMed  Google Scholar 

  22. Watson PA (1991) Function follows form: generation of intracellular signals by cell deformation. FASEB J 5: 2013–2019

    PubMed  Google Scholar 

  23. Shaw L, Messier JM, Mercurio A (1990) The activation-dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the alpha-6 beta-1 integrin. J Cell Biol 110: 2167–2174

    PubMed  Google Scholar 

  24. Guan J-L, Shalloway D (1992) Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358: 690–692

    Article  PubMed  Google Scholar 

  25. Vernon RB, Angello JC, Iruela-Arispe ML, Lane TF, Sage EH (1992) Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab Invest 66: 536–547

    PubMed  Google Scholar 

  26. Sage EH, Bornstein P (1991) Extracellular proteins that modulate cell-matrix interactions. J Biol Chem 266: 14831–14834

    PubMed  Google Scholar 

  27. Nathan C, Sporn M (1991) Cytokines in context. J Cell Biol 113: 981–986

    PubMed  Google Scholar 

  28. Nathan CF (1987) Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest 80: 1550–1560

    PubMed  Google Scholar 

  29. Paralkar VM, Vukicevic S, Reddi AH (1991) Transforming growth factor β type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev Biol 143: 303–308

    PubMed  Google Scholar 

  30. Ruoslahti E, Yamaguchi Y (1991) Proteoglycans as modulators of growth factor activities. Cell 64: 687–689

    Google Scholar 

  31. Repraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252: 1705–1707

    PubMed  Google Scholar 

  32. Gospodarowicz D, Cheng J (1986) Heparin protects basic and acidic FGF from inactivation. J Cell Physiol 128: 475–484

    PubMed  Google Scholar 

  33. Roberts R, Gallagher J, Spooncer E, Allen TD, Bloomfield F, Dexter T (1988) Heparan sulphate boudg growth factors: a mechanism for stromal cell haemopoiesis. Nature 332: 376–378

    PubMed  Google Scholar 

  34. Flaumenhaft R, Moscatelli D, Rifkin DB (1990) Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J Cell Biol 111: 1651–1659

    PubMed  Google Scholar 

  35. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64: 841–848

    PubMed  Google Scholar 

  36. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25: 312–318

    PubMed  Google Scholar 

  37. Grant DS, Lelkes PI, Fukuda K, Kleinman HK (1991) Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell Dev Biol 27A: 327–336

    PubMed  Google Scholar 

  38. Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288: 551–556

    PubMed  Google Scholar 

  39. Maciag T, Kadish J, Wilkins L, Stemerman MB, Weinstein R (1982) Organizational behavior of human umbilical vein endothelial cells. J Cell Biol 94: 511–520

    PubMed  Google Scholar 

  40. Vukicevic S, Luyten F, Kleinman HK, Reddi AH (1990) Differentiation of canalicular cell processes in bone cells by basement membrane matrix components: regulation by discrete domains of lamihin. Cell 63: 437–445

    PubMed  Google Scholar 

  41. Kibbey MC, Royce LS, Dym M, Baum BJ, Kleinman HK (1992) Glandular-like morphogenesis of the human submandibular tumor cell line A253 on basement membrane components. Exp Cell Res 198: 343–351

    PubMed  Google Scholar 

  42. Seely KA, Aggeler J (1991) Modulation of milk protein synthesis through alteration of the cytoskeleton in mouse mammary epithelial cells cultured on a reconstituted basement membrane. J Cell Physiol 146: 117–130

    PubMed  Google Scholar 

  43. DiPersio CM, Jackson DA, Zaret DA (1991) The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol Cell Biol 11: 4405–4414

    PubMed  Google Scholar 

  44. Ruoslahti E (1991) Proteoglycans in cell regulation. J Biol Chem 264: 13369–13372

    Google Scholar 

  45. Yamada K (1991) Fibronectin and other cell interactive glycoproteins. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum, New York, pp 111–146

    Google Scholar 

  46. Nagai T, Yamakawa N, Aota S, Yamada S, Akiyama SK, Olden K, Yamada KM (1991) Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration and matrix assembly. J Cell Biol 114: 1295–1305

    PubMed  Google Scholar 

  47. Aota S, Nagai T, Yamada KM (1991) Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using sitedirected mutagenesis. J Biol Chem 266: 15938–15943

    PubMed  Google Scholar 

  48. Kleinman HK, Graf J, Iwamoto I, Kitten G, Ogle RC, Sasaki M, Yamada Y, Martin GR, Luckenbill-Edds L (1987) Role of basement membranes in cell differentiation. Ann N Y Acad Sci 513: 134–145

    PubMed  Google Scholar 

  49. Baron van Evercooren A, Kleinman HK, Ohno S, Marangos P, Schwartz JP, Dubois-Dalcq ME (1982) Nerve growth factor, laminin, and fibronectin promote neurite outgrowth in human fetal sensory ganglia cultures. J Neurosci Res 8: 179–194

    PubMed  Google Scholar 

  50. Weeks BS, DiSalvo J, Kleinman HK (1990) Laminin-mediated neurite outgrowth involves protein dephosphorylation. J Neurosci Res 27: 418–426

    PubMed  Google Scholar 

  51. Terranova VP, rohrbach DH, Martin GR (1980) Role of laminin in the attachment of PAM212 (epithelial) cells to basement membrane collagen. Cell 22: 719–723

    PubMed  Google Scholar 

  52. Kennedy DW, Rohrbach DH, Martin GR, Momoi T, Yamada KM (1983) The adhesive glycoprotein laminin is an agglutinin. J Cell Physiol 114: 257–262

    PubMed  Google Scholar 

  53. McGarvey ML, Baron van Evercooren A, Kleinman HK, DuBoisDalcq M (1982) Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev Biol 105: 18–28

    Google Scholar 

  54. McCarthy JB, Furcht LT (1984) Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J Cell Biol 98: 1474–1480

    PubMed  Google Scholar 

  55. Terranova VP, Williams JE, Liotta LA, Martin GR (1984) Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. Science 226: 982–985

    PubMed  Google Scholar 

  56. Panayotou G, End P, Aumailley M, Timpl R, Engel J (1989) Domains of laminin with growth-factor activity. Cell 56: 93–101

    PubMed  Google Scholar 

  57. Graf J, Ogle RC, Robey FA, Sasaki M, Martin GR, Yamada Y, Kleinman HK (1987) A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67000 laminin receptor. Biochemistry 26: 6896–6900

    PubMed  Google Scholar 

  58. Sakamoto N, Iwahana M, Tanaka NG, Osada T (1991) Inhibition of angiogenesis and tumor growth by a synthetic lamionin peptide, CDPGYIGSR-NH2. Cancer Res 51: 903–906

    PubMed  Google Scholar 

  59. Tashiro K, Sephel GC, Weeks B, Sasaki M, Martin GR, Kleinman HK, Yamada Y (1989) A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration and neurite outgrowth. J Biol Chem 264: 16174–16182

    PubMed  Google Scholar 

  60. Grant DS, Tashiro K-I, Segui-Real B, Yamada Y, Martin GR, Kleinman HK (1989) Two different domains of laminin mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58: 933–943

    PubMed  Google Scholar 

  61. Kanemoto T, Reich R, Royce L, Greatorex D, Adler SH, Shiraishi N, Martin GR, Yamada Y, Kleinman HK (1990) Identification of an amino acid sequence from the laminin A chain that stimulates metastasis and collagenase IV production. Proc Natl Acad Sci USA 87: 2279–2283

    PubMed  Google Scholar 

  62. Kibbey MC, Grant DS, Kleinman HK (1992) Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J Natl Cancer Inst 84: 1633–1638

    PubMed  Google Scholar 

  63. Stack S, Gray RD, Pizzo SV (1991) Modulation of plasminogen activation and type IV collagenase activity by a synthetic peptide derived from the laminin A chain. Biochemistry 30: 2973–2077

    Google Scholar 

  64. Ruoslahti E (1991) Integrins. J Clin Invest 87: 1–5

    PubMed  Google Scholar 

  65. Kleinman HK, Weeks BS, Cannon FB, Sweeney TM, Sephel GC, Clement B, Zain M, Olson MOJ, Jucker M, Burrous B (1991) Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys 290: 320–325

    PubMed  Google Scholar 

  66. Liotta LA, Steeg PA, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336

    Article  PubMed  Google Scholar 

  67. Duijvestijn A, Hamann A (1989) Mechanisms and regulation of lymphocyte migration. Immunol Today 10: 23–28

    PubMed  Google Scholar 

  68. Pluznik DH, Fridman R, Reich R (1992) Correlation in the expression of type IV collagenase and the invasive and chemotactic abilities of myelomonocytic cells during differentiation into macrophages. Exp Hematol 20: 57–63

    PubMed  Google Scholar 

  69. Harris RC, Haralson MA, Badr KF (1992) Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab Invest 66: 548–554

    PubMed  Google Scholar 

  70. Bar-Shavit R, Sabbah V, Lampugnani MG, Marchisio PC, Fenton JWI, Vlodavsky I, Dejana E (1991) An arg-gly-asp sequence within thrombin promotes endothelial cell adhesion. J Cell Biol 112: 335–344

    PubMed  Google Scholar 

  71. Madri JA, Bell L, Marx M, Merwin JR, Basson C, Prinz C (1991) Effects of soluble factors and extracellular matrix components on vascular cell behavior in vitro and in vivo: models of deendothelialization and repair. J Cell Biochem 45: 123–130

    PubMed  Google Scholar 

  72. Glass WFI, Rampt E, Garoni JA, Fenton JWI, Kreisberg JI (1991) Regulation of mesangial cell adhesion and shape by thrombin. Am J Physiol 261: F336-F344

    PubMed  Google Scholar 

  73. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. N Engl J Med 324: 1–8

    PubMed  Google Scholar 

  74. Kaplony A, Zimmerman DR, Fischer RW, Imhof BA, Odermatt BF, Winterhalter KH, Vaughan L (1991) Tenascin M, 220.000 isoform expression correlates with corneal cell migration. Development 112: 605–614

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnaper, H.W., Kleinman, H.K. Regulation of cell function by extracellular matrix. Pediatr Nephrol 7, 96–104 (1993). https://doi.org/10.1007/BF00861587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00861587

Key words

Navigation