Phase equilibrium and interphase transition layer as an ordering problem

  • P. T. Bruk-Levinson
  • I. Yu. Murokh


The model of a binary ordering alloy, developed previously based on the conventional distribution method, is used for describing spatially inhomogeneous multiphase equilibrium systems of gas-solid, liquid-gas or crystal-liquid types, including the structure of an interphase transition layer. General results are illustrated by specific predictions for a two-phase crystal-gas system.


Statistical Physic Phase Equilibrium General Result Transition Layer Equilibrium System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Krivoglaz and A. A. Smirnov, Theory of Ordering Alloys [in Russian], Moscow (1958).Google Scholar
  2. 2.
    J. Ziman, Disorder Models [Russian translation], Moscow (1982).Google Scholar
  3. 3.
    P. T. Bruk-Levinson, Statistical Theory of Real Crystals [in Russian], Minsk (1989).Google Scholar
  4. 4.
    P. T. Bruk-Levinson and I. Yu. Murokh, Dokl. Akad. Nauk BSSR,34, No. 11, 1005–1008 (1990).Google Scholar
  5. 5.
    P. R. Bruk-Levinson and I. Yu. Murokh, in: Thermal Physics of Condensed Media: Structure and Properties [in Russian], Minsk (1990), pp. 65–82.Google Scholar
  6. 6.
    K. Crockstone, Physics of the Liquid State [Russian translation], Moscow (1978).Google Scholar
  7. 7.
    I. Z. Fisher, Statistical Theory of Liquids [in Russian], Moscow (1961).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshits, Statistical Physics [in Russian], Moscow (1976).Google Scholar
  9. 9.
    C. N. Yang and T. D. Lee, Phys. Rev.87, No. 3, 404–419 (1952).Google Scholar
  10. 10.
    L. A. Rott, Statistical Theory of Molecular Systems [in Russian], Moscow (1979).Google Scholar
  11. 11.
    P. T. Bruk-Levinson and V. V. Belov, “Statistical theory of equilibrium properties of a substance of arbitrary density,” Preprint No. 3, Heat and Mass Transfer Institute, Belorussian Academy of Sciences, Minsk (1983).Google Scholar
  12. 12.
    M. V. Fedoryuk, Steepest Descent Method [in Russian], Moscow (1977).Google Scholar
  13. 13.
    G. L. Pollack, Rev. Mod. Phys.,36, No. 3, 748–791 (1964).Google Scholar
  14. 14.
    H. Van Beiren and I. Nolden, Usp. Fiz. Nauk,161, No. 7, 133–172 (1991).Google Scholar
  15. 15.
    X.-M. Zhu and H. Zabel, Acta Cryst.,46A, 86–94 (1990).Google Scholar
  16. 16.
    E. I. Kats and M. I. Tribelskii, Zh. Eksp. Tekh. Fiz.,98, No. 1, 196–210 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • P. T. Bruk-Levinson
  • I. Yu. Murokh

There are no affiliations available

Personalised recommendations