Journal of engineering physics

, Volume 37, Issue 2, pp 950–955 | Cite as

A phenomenological description of diffusion processes in nonideal gases

  • P. P. Bezverkhii
  • V. G. Martynets
  • E. V. Matizen


A phenomenological approach to the diffusion problem is presented which allows one to determine the behavior of the coefficient of interdiffusion in nonideal binary gaseous solutions in a rather wide region of variation of the parameters.


Statistical Physic Diffusion Process Wide Region Diffusion Problem Phenomenological Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. A. Leontovich, Zh. Eksp. Teor. Fiz.,49, 1624 (1965).Google Scholar
  2. 2.
    M. De Paz, Proceedings of Fourth Symposium on Thermophysical Properties, Am. Soc. Mech. Eng., New York (1968).Google Scholar
  3. 3.
    N. J. Trappeniers and J. P. J. Michels, Chem. Phys. Lett.,18, 1 (1973); L. Durbin and R. Kobayashi, J. Chem. Phys.,37, 1643 (1962); P. Carelli, I. Modena, and F. R. Ricci, Phys. Rev.,A7, 298 (1973).Google Scholar
  4. 4.
    H. A. O'Hern and J. J. Martin, Ind. Eng. Chem.,47, 2081 (1955); W. L. Robb and H. G. Drickamer, J. Chem. Phys.,19, 1504 (1951).Google Scholar
  5. 5.
    F. W. Bekker, W. Vogell, and F. Zigan, Z. Naturforsch., Teil B,8a, 687 (1953).Google Scholar
  6. 6.
    P. H. Oosting and N. J. Trappeniers, Physica,51, 418 (1971).Google Scholar
  7. 7.
    J. K. Tison and E. R. Hunt, J. Chem. Phys.,54, 1526 (1971).Google Scholar
  8. 8.
    J. O. Hirschfelder et al., The Molecular Theory of Gases and Liquids, Wiley, New York (1954).Google Scholar
  9. 9.
    R. S. Ehrlich and H. Y. Carr, Phys. Rev. Lett.,25, 341 (1970).Google Scholar
  10. 10.
    H. Hamann, H. Richtering, and U. Zucker, Ber. Bunsenges. Phys. Chem.,70, 1084 (1966); M. Lipsicas, J. Chem. Phys.,36, 1235 (1962).Google Scholar
  11. 11.
    H. J. M. Hanley and E. G. D. Cohen, Physica,83A, 215 (1976).Google Scholar
  12. 12.
    V. S. Gurvich and É. V. Matizen, Zh. Eksp. Teor. Fiz.,60, 1379 (1971); V. S. Gurvich, L. P. Lukin, and É. V. Matizen, Zh. Eksp. Teor. Fiz.,73, 671 (1977).Google Scholar
  13. 13.
    V. G. Martynets and É. V. Matizen, Zh. Eksp. Teor. Fiz.,67, 1023 (1974).Google Scholar
  14. 14.
    A. S. Raspopin, P. G. Zykov, and P. E. Suetin, Dep. Vses. Inst. Nauch, Tekh. Inform., No. 1113-77.Google Scholar
  15. 15.
    I. R. Krichevskii, Phase Transitions at High Pressures [in Russian], Goskhimizdat, Moscow (1952).Google Scholar
  16. 16.
    N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, Halsted Press (1975).Google Scholar
  17. 17.
    V. G. Martynets and É. V. Matizen, Zh. Eksp. Teor. Fiz.,67, 697 (1974).Google Scholar
  18. 18.
    A. G. Karpushin, N. D. Kosov, and M. S. Moldabekova, in: Diffusion in Gases and Liquids [in Russian], Kaz. Gos. Univ., Alma-Ata (1974).Google Scholar
  19. 19.
    H. L. Swinney and D. L. Henry, Phys. Rev.,A8, 2586 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • P. P. Bezverkhii
    • 1
  • V. G. Martynets
    • 1
  • E. V. Matizen
    • 1
  1. 1.Institute of Inorganic Chemistry, Siberian BranchAcademy of Sciences of the USSRNovosibirsk

Personalised recommendations