Journal of engineering physics

, Volume 33, Issue 1, pp 848–852 | Cite as

Method of “joining” of solutions in the determination of a plane and a cylindrical phase interface in the Stefan problem

  • I. M. Kutasov
  • V. T. Balobaev
  • R. Ya. Demchenko


It is shown that the position of the phase interface in the Stefan problem can be expressed through two functions: One function determines the position of the melting-temperature isotherm in the problem without phase transitions and the second does not depend on time.


Phase Transition Statistical Physic Phase Interface Stefan Problem Cylindrical Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University Press (1959).Google Scholar
  2. 2.
    A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).Google Scholar
  3. 3.
    A. V. Lykov, Heat Conduction and Diffusion in the Production of Leather, Synthetics, and Other Materials [in Russian], Gizlegprom, Moscow-Leningrad (1941).Google Scholar
  4. 4.
    I. M. Kutasov, Freiberger Forschungshefte,C238, 55–61 (1968).Google Scholar
  5. 5.
    B. M. Budak, F. P. Vasil'ev, and A. V. Uspenskii, Numerical Methods in Phase Dynamics [in Russian], Vol. 4, Vychisl. Tsentr. Mosk. Gos. Univ. (1965), pp. 139–183.Google Scholar
  6. 6.
    J. C. Jaeger, J. Math. Phys.,34, No. 4, 316–321 (1956).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • I. M. Kutasov
    • 1
  • V. T. Balobaev
    • 1
  • R. Ya. Demchenko
    • 1
  1. 1.Institute of Cryopedology, Siberian BranchAcademy of Sciences of the SSSRYakutsk

Personalised recommendations