Journal of engineering physics

, Volume 38, Issue 1, pp 99–102 | Cite as

Compressible-liquid motion in porous medium with flowing and stagnant regions

  • Yu. I. Babenko
  • V. S. Golubev


Filtration equations taking into account both flowing and stagnant regions of a porous medium [1] are solved for a semiinfinite region by the fractional-differentiation method [2, 3], For a given arbitrary pressure change at the boundary of the region the filtration rate at this boundary may be determined.


Filtration Statistical Physic Porous Medium Filtration Rate Pressure Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. S. Golubev, Dokl. Akad. Nauk SSSR, No. 6, 238 (1978).Google Scholar
  2. 2.
    Yu. I. Babenko, in: Heat and Mass Transfer [in Russian], Vol. 8, Minsk (1972).Google Scholar
  3. 3.
    Yu. I. Babenko, Inzh.-Fiz. Zh., No. 3, 26 (1974).Google Scholar
  4. 4.
    Development of Filtration-Theory Research in the USSR [in Russian], Nauka, Moscow (1969).Google Scholar
  5. 5.
    Yu. I. Babenko, Inzh.-Fiz. Zh.,34, No. 5 (1978).Google Scholar
  6. 6.
    G. I. Barenblatt, Yu. P. Zheltov, and I. N. Kochina, Prikl. Mat. Mekh.,24, No. 5 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Yu. I. Babenko
    • 1
  • V. S. Golubev
    • 1
  1. 1.All-Union Scientific-Research Institute of Mineral OresMoscow

Personalised recommendations