Advertisement

Pediatric Nephrology

, Volume 9, Issue 5, pp 632–637 | Cite as

Developmental renal hemodynamics

  • Lynne P. Yao
  • Pedro A. Jose
Invited Review

Abstract

Renal blood flow, which is lower in the immature than in the mature animal, achieves adult values in human subjects by 1–2 years of age. The age-related increase in renal blood flow cannot be completely explained by increases in kidney size, since nephrogenesis is complete by 36 weeks' gestation in humans. Thus, other factors, especially changes in renal hemodynaics, are likely to be responsible for the increase in renal blood flow. The increase in renal blood flow appears to be directly related to the decrease in renal vascular resistance during the postnatal period. Decreases in the effect of renal vasoconstrictors, increases in the effect of renal vasodilators, or a combination of the two, may be responsible. Many mediators of vasoconstriction have been studied, including adenosine, catecholamines, endothelin, endogenous digitalis-like peptide, and the renin-angiotensin system. Mediators of vasodilation include endothelium-derived relaxing factor (e.g., nitric oxide), prostaglandins, atrial natriuretic peptide, dopamine, and kinins. However, the decrease in renal vascular resistance with age is most likely related to decreases in activity of the renin-angiotensin system and responsiveness to catecholamines; these effects are modulated by nitric oxide. Other mediators may also be important in determining the age-related decrease in renal vascular resistance, but their exact roles remain to be defined.

Key words

Renal blood flow Renal vascular resistance Development Vasoactive hormones Receptors Signal transduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jose PA, Haramati A, Fildes RD (1992) Postnatal maturation of renal blood flow. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. Saunders, Philadelphia, pp 1196–1200Google Scholar
  2. 2.
    Levinsky NG, Levy M (1973) Clearance techniques. In: Orloff J, Berliner RW (eds) Handbook of physiology, section 8: renal physiology. American Physiology Society, Washington, D.C., pp 103–117Google Scholar
  3. 3.
    Seikaly MG, Arant BS Jr (1992) Development of renal hemodynamics: glomerular filtration and renal blood flow. Clin Perinatal 19: 1–13Google Scholar
  4. 4.
    Corey HE, Spitzer A (1992) Renal blood flow and glomerular filtration rate during development. In: Edelmann CM Jr (ed) Pediatric kidney disease. 2nd edn. Little Brown, Boston, Toronto, London, pp 49–55Google Scholar
  5. 5.
    Calcagno PL, Rubin MI (1963) Renal extraction of para-aminohippurate in infants and children. J Clin Invest 42: 1632–1639PubMedGoogle Scholar
  6. 6.
    Fawer CL, Torrado A, Guignard JP (1979) Maturation of renal function in full term and premature neonates. Helv Paediatr Acta 34: 11–21PubMedGoogle Scholar
  7. 7.
    Robillard JE, Weismann DN, Herin P (1981) Ontogeny of single glomerular perfusion rate in fetal and newborn lambs. Pediatr Res 15: 1248–1255PubMedGoogle Scholar
  8. 8.
    Jose P, Logan A, Slotkoff L, Lilienfield L, Calcagno P, Eisner G (1971) Intrarenal blood flow distribution in canine puppies. Pediatr Res 5: 337–344Google Scholar
  9. 9.
    Seikaly MG, Arant BS Jr (1989) Developmental changes in renal blood flow and its intracortical distribution in conscious dogs (abstract). Kidney Int 35: 473Google Scholar
  10. 10.
    Corey HE, Spitzer A (1992) Renal blood flow and glomerular filtration rate during development. In: Edelmann CM Jr (ed) Pediatric kidney disease, 2nd edn. Little Brown, Boston, Toronto, London, pp 49–55Google Scholar
  11. 11.
    Gruskin AB, Edelmann CM Jr, Yuan S (1970) Maturational changes in renal blood flow in piglets. Pediatr Res 4: 7–13PubMedGoogle Scholar
  12. 12.
    Dworkin LD, Brenner BM (1991) The renal circulations. In: Brenner BM, Rector FC (eds) The kidney, 4th edn. Saunders, Philadelphia, pp 164–204Google Scholar
  13. 13.
    Jose PA, Slotkoff LM, Montgomery S, Calcagno PL, Eisner G (1975) Autoregulation of renal blood flow in the puppy. Am J Physiol 229: 983–938PubMedGoogle Scholar
  14. 14.
    Thurau K (1964) Renal hemodynamics. Am J Med 36: 698–719PubMedGoogle Scholar
  15. 15.
    Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressures. J Physiol (Lond) 28: 220Google Scholar
  16. 16.
    Bailie MD (1992) Development of the endocrine function of the kidney. Clin Perinatal 19: 59–68Google Scholar
  17. 17.
    Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension 23: 369–374PubMedGoogle Scholar
  18. 18.
    Robillard JE, Weismann DN, Gomez RA, Ayres NA, Lawton WJ, VanOrden DE (1983) Renal and adrenal responses to converting enzyme inhibition in fetal and newborn life. Am J Physiol 244: R249-R256PubMedGoogle Scholar
  19. 19.
    Arant BS Jr, Seikaly MG (1989) Intrarenal angiotensin II may regulate developmental changes in renal blood flow (abstract). Pediatr Res 25: 334AGoogle Scholar
  20. 20.
    Osborn JL, Hook JB, Bailie MD (1980) Effect of saralasin and indomethacin on renal function in developing piglets. Am J Physiol 238: R438-R442PubMedGoogle Scholar
  21. 21.
    Solhaug MJ, Wallace M, Granger JP (1994) Regulation of renal hemodynamics by nitric oxide and angiotensin II in the developing piglet (abstract). Pediatr Res 35: 373AGoogle Scholar
  22. 22.
    Ciuffo GM, Viswanathan M, Sletzer AM, Tsutsumi K, Saavedra JM (1993) Glomerular angiotensin II receptor subtypes during development of rat kidney. Am J Physiol 265: F264-F271PubMedGoogle Scholar
  23. 23.
    Tufro-McReddie A, Harrison JK, Everett AD, Gomez RA (1993) Ontogeny of type I angiotensin II receptor gene expression in the rat. J Clin Invest 91: 530–537PubMedGoogle Scholar
  24. 24.
    Kakuchi J, Ichiki T, Kiyama S, Hogan BLM, Fogo A, Inagami T, Ichikawa I (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47: 140–147PubMedGoogle Scholar
  25. 25.
    Fogo A, Yoshida Y, Yared A, Ichikawa I (1990) Importance of angiogenic action of angiotensin II in the glomerular growth of maturing kidneys. Kidney Int 38: 1068–1074PubMedGoogle Scholar
  26. 26.
    Shotan A, Widerhorn J, Hurst A, Elkayam J (1994) Risks of angiotensin-converting enzyme inhibition during pregnancy: experimental and clinical evidence, potential mechanisms, and recommendations for use. Am J Med 96: 451–456PubMedGoogle Scholar
  27. 27.
    Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, Gustafsson H, Petersen J, Adams MA (1994) Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 45: 485–492PubMedGoogle Scholar
  28. 28.
    Jose PA, Felder RA (1992) Renal nerves. In: Edelmann CM, Spitzer A (eds) Pediatric nephrology. 2nd edn, Little Brown, Boston, pp 297–325Google Scholar
  29. 29.
    Fildes RD, Eisner GM, Calcagno PL, Jose PA (1985) Renal alphaadrenoceptors and excretion in the dog. Am J Physiol 248: F128-F133PubMedGoogle Scholar
  30. 30.
    Solhaug MJ, Wallace MR, Adelman RD, Granger JP (1995) Interaction between nitric oxide and renal sympathetic nerves in the regulation of renal hemodynamics in the developing piglet (abstract). Pediatr Res 37: 371AGoogle Scholar
  31. 31.
    Robillard JE, Guillery EN, Segar JL, Merrill DC, Jose PA (1993) Influence of renal nerves on renal function during development. Pediatr Nephrol 7: 667–671PubMedGoogle Scholar
  32. 32.
    Jose P, Slotkoff L, Lilienfeld L, Calcagno P, Eisner G (1974) Sensitivity of the neonatal renal vasculature to epinephrine. Am J Physiol 226: 796–799PubMedGoogle Scholar
  33. 33.
    Guillery EN, Segar JL, Merrill DC, Nakamura KT, Jose PA, Robillard JE (1994) Ontogenic changes in renal response to α1B-andrenoceptor stimulation in sheep. Am J Physiol 267: R990-R998PubMedGoogle Scholar
  34. 34.
    Guillery EN, Porter CC, Page WV, Jose PA, Felder R, Robillard JE (1993) Developmental regulation of the α1B-andrenoceptor in the sheep kidney. Pediatr Res 34: 124–128PubMedGoogle Scholar
  35. 35.
    Ebara H, Suzuki S, Nagashima K, Shimano S, Kuroume T (1986) Digoxin-like immunoreactive substances in urine and serum from preterm and term infants: relationship to renal excretion of sodium. J Pediatr 108: 760–762PubMedGoogle Scholar
  36. 36.
    Kon V, Fogo A (1993) Endothelin: potential role in development and disease. Pediatr Nephrol 7: 876–880PubMedGoogle Scholar
  37. 37.
    Sulyok E, Ertl T, Adamovits K, Hovanyovskzky S, Rascher W (1993) Urinary endothelin excretion in the neonate: influence of maturity and perinatal pathology. pediatr Nephrol 7: 881–885PubMedGoogle Scholar
  38. 38.
    Semama DS, Thonney M, Guignard JP, Gouyon JB (1993) Effects of endothelin on renal function in newborn rabbits. Pediatr Res 34: 120–123PubMedGoogle Scholar
  39. 39.
    Semama DS, Thonney M, Guignard J-P (1993) Role of endogenous endothelin in renal haemodynamics of newborn rabbits. Pediatr Nephrol 7: 886–890PubMedGoogle Scholar
  40. 40.
    Matson JR, Stokes JB, Robillard JE (1981) Effects of inhibition of prostaglandin synthesis on fetal renal function. Kidney Int 20: 621–627PubMedGoogle Scholar
  41. 41.
    Judes C, Helwig J-J, Bollack C (1988) Effect of prostaglandin E2 on adenylate cyclase activity in isolated glomeruli and tubules during postnatal maturation of rat renal cortex. Biol Neonate 53: 113–120PubMedGoogle Scholar
  42. 42.
    Bensman A, Sraer J, Delarue F, Bens M, Vasmant D, Sraer JD (1987) Synthesis of prostaglandins and lipoxygenase products by rat glomeruli during development. Biol Neonate 52: 149–156PubMedGoogle Scholar
  43. 43.
    Mitchell MD, Lucas A, Etches Pc, Brunt JD, Turnbull AC (1978) Plasma prostaglandin levels during early neonatal life following term and pre-term delivery. Prostaglandins 16: 319–326PubMedGoogle Scholar
  44. 44.
    Ma YH, Gebremedhin D, Schwartzman ML, Falck JR, Clark JE, Masters BS, Harder DR, Roman RJ (1993) 20-Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries. Circ Res 72: 126–136PubMedGoogle Scholar
  45. 45.
    Palmer RM, Ferrige AG, Moncada SL (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526CrossRefPubMedGoogle Scholar
  46. 46.
    Lahera V, Salom MG, Miranda-Guardiola F, Moncada S, Romero JC (1991) Effects ofN-nitro-l-arginine methylester on renal function and blood pressure. Am J Physiol 261: F1033-F1037PubMedGoogle Scholar
  47. 47.
    Solhaug MJ, Wallace MR, Granger JP (1993) Endothelium-derived nitric oxide modulates renal hemodynamics in the developing piglet. Pediatr Res 34: 750–754PubMedGoogle Scholar
  48. 48.
    Bogaert GA, Kogan BA, Mevorach RA (1993) Effects of endothelium-derived nitric oxide on renal hemodynamics and function in the sheep fetus. Pediatr Res 34: 755–761PubMedGoogle Scholar
  49. 49.
    Solhaug MJ, Wallace MR, Adelman RD, Granger JP (1995) Interaction between nitric oxide and renal sympathetic nerves in the regulation of renal hemodynamics in the developing piglet (abstract). Pediatr Res 37: 371AGoogle Scholar
  50. 50.
    Chevalier RL (1993) Atrial natriuretic peptide in renal development. Pediatr Nephrol 7: 652–656PubMedGoogle Scholar
  51. 51.
    Semmekrot B, Guignard JP (1991) Atrial natriuretic peptide during early human development. Biol Neonate 60: 341–349PubMedGoogle Scholar
  52. 52.
    Guignard JP, Gouyon JB, John EG (1991) Vasoactive factors in the immature kidney. Pediatr Nephrol 5: 443–446PubMedGoogle Scholar
  53. 53.
    Yamaji T, Hirai N, Ishibashi M, Takaku F, Yanaihara T, Nakayama T (1986) Atrial natriuretic peptide in umbilical cord blood: evidence for a circulating hormone in human fetus. J Clin Endocrinol Metab 63: 1414–1417PubMedGoogle Scholar
  54. 54.
    Semmekrot BA, Wiesel PH, Monnens LAH (1990) Age differences in renal response to atrial natriuretic peptide in rabbits. Life Sci 46: 849–856PubMedGoogle Scholar
  55. 55.
    Robillard JE, Nakamura KT, Varille VA, Anresen AA, Matherne GP, Van Orden DE (1988) Ontogeny of the renal response to natriuretic peptide in sheep. Am J Physiol 254: F634-F641PubMedGoogle Scholar
  56. 56.
    Jose PA, Raymond JR, Bates MD, Aperia A, Felder RA, Carey RM (1992) The renal dopamine receptors. J Am Soc Nephrol 2: 1265–1278PubMedGoogle Scholar
  57. 57.
    Gouyon JB, Guignard JP (1989) Adenosine in the immature kidney. Dev Pharmacol Ther 13: 113–119PubMedGoogle Scholar
  58. 58.
    Gouyon JB, Guignard JP (1989) Theophylline prevents the hypoxemia-induced renal hemodynamic changes in newborn and adult rabbits. Kidney Int 33: 1078–1083Google Scholar
  59. 59.
    (1994) Receptor and ion channel nomenclature, Trends Pharmacol Sci Suppl: 1–51Google Scholar

Copyright information

© IPNA 1995

Authors and Affiliations

  • Lynne P. Yao
    • 1
  • Pedro A. Jose
    • 1
  1. 1.Georgetown University Children's Medical Center, Department of Pediatrics and Physiology and BiophysicsGeorgetown University School of MedicineWashington, DCUSA

Personalised recommendations