Some classes of two-dimensional vortex flows of an ideal fluid

  • O. V. Kaptsov


Vortex Mathematical Modeling Mechanical Engineer Industrial Mathematic Ideal Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. A. Shercliff, “Simple rotational flows,” J. Fluid Mech.,82, No. 4 (1977).Google Scholar
  2. 2.
    G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press (1973).Google Scholar
  3. 3.
    J. T. Stuart, “On finite-amplitude oscillations in laminar mixing layers,” J. Fluid Mech.,29, No. 3 (1967).Google Scholar
  4. 4.
    L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  5. 5.
    R. K. Bullough and P. J. Caudrey, Solitons, Springer-Verlag, Berlin (1980).Google Scholar
  6. 6.
    G. L. Lamb, Elements of Soliton Theory, Wiley-Interscience, New York (1980).Google Scholar
  7. 7.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th Ed., Cambridge Univ. Press (1927).Google Scholar
  8. 8.
    A. I. Markushevich, The Remarkable Sines [in Russian], Nauka, Moscow (1974).Google Scholar
  9. 9.
    M. Kirsch, Differential Topology [Russian translation], Mir, Moscow (1979).Google Scholar
  10. 10.
    N. E. Zhukovskii, Vortex Theory of Propellers [in Russian], Gostekhizdat, Moscow (1950).Google Scholar
  11. 11.
    V. I. Arnol'd, “On an a priori estimate of the theory of hydrodynamic stability,” Izv. Vyssh. Uchebn. Saved., Mat., No. 5 (1966).Google Scholar
  12. 12.
    G. Bateman, MHD Instabilities [Russian translation], Energoizdat (1982).Google Scholar
  13. 13.
    Yu. B. Movsesyants, “Solitons in two-dimensional hydrodynamic models of a cold plasma,” Zh. Eksp. Teor. Fiz.,91, No. 2(8) (1986).Google Scholar
  14. 14.
    N. I. Yavorskii, “Exact solutions of the equation Δu=Sinh u,” Fluid Mechanics and Heat Transfer in One and Two-Phase Media [in Russian], Novosibirsk (1979).Google Scholar
  15. 15.
    E. B. Gledzer, F. V. Dolzhanskii, and A. M. Obukhov, Systems of the Hydrodynamic Type and their Applications [in Russian], Nauka, Moscow (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • O. V. Kaptsov
    • 1
  1. 1.Krasnoyarsk

Personalised recommendations