Polymer Mechanics

, Volume 2, Issue 4, pp 324–331 | Cite as

Geometry of theories of strength

  • A. K. Malmeister


The author proposes a geometrical method of describing limit states by means of surfaces in stress, strain or stress-strain space using surface tensors. The history of the geometrical representation of theories of strength is briefly surveyed.


Limit State Geometrical Representation Geometrical Method Surface Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Nadai, Theory of Flow and Fracture of Solids [Russian translation], IL, Moscow, 1954.Google Scholar
  2. 2.
    S. P. Timoshenko, History of Strength of Materials [Russian translation], Moscow, 1956.Google Scholar
  3. 3.
    Ponomarev et al., Strength Calculations in Machine Building [in Russian], vol. I, Mashgiz, 1956.Google Scholar
  4. 4.
    M. M. Filonenko-Borodich, Mechanical Theories of Strength [in Russian], Moscow, 1961.Google Scholar
  5. 5.
    E. K. Ashkenazi, Mekh. polim. [Polymer Mechanics], 2, 79, 1965.Google Scholar
  6. 6.
    E. K. Ashkenazi, I. P. Boksberg, G. M. Rubinshtein, and K. K. Turoverov, Anisotropy of the Mechanical Properties of Wood and Plywood [in Russian], Goslesbumizdat, 1958.Google Scholar
  7. 7.
    K. V. Zakharov, Plast. massy, 8, 59, 1961.Google Scholar
  8. 8.
    K. V. Zakharov, Plast. massy, 6, 47, 1963.Google Scholar
  9. 9.
    I. I. Gol'denblat and V. A. Kopnov, Mekh. polim. [Polymer Mechanics], 2, 70, 1965.Google Scholar
  10. 10.
    I. I. Gol'denblat and V. A. Kopnov, Proc. IInd Sci.-Techn. Conf. Struct. Mech. of Ships in memory of Academician Yu. A. Shimanskii [in Russian], Leningrad, 154, 1965.Google Scholar
  11. 11.
    V. D. Protasov and V. A. Kopnov, Mekh. polim. [Polymer Mechanics],5, 39, 1965.Google Scholar
  12. 12.
    A. L. Rabinovich, "Elastic constants and strength of anisotropic materials," Tr. TsAGI, 582, 1946.Google Scholar
  13. 13.
    S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body [in Russian], Tekhteoretizdat, 1950.Google Scholar
  14. 14.
    R. Hill, Mathematical Theory of Plasticity [Russian translation], 1956.Google Scholar
  15. 15.
    L. Hu and J. Marin, Mekhanika, 2, 1956.Google Scholar

Copyright information

© The Faraday Press, Inc 1969

Authors and Affiliations

  • A. K. Malmeister
    • 1
  1. 1.Institute of Polymer Mechanics AS LatvSSRRiga

Personalised recommendations