Journal of Applied Mechanics and Technical Physics

, Volume 18, Issue 5, pp 659–665 | Cite as

Flow and heat transfer in the thermogravitational generation mode

  • A. F. Polyakov


Heat Transfer Mathematical Modeling Mechanical Engineer Industrial Mathematic Generation Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. Mreiden, Étude de la Structure de l'Écoulement et du Transfert de Chaleur en Convection Mixte dans un Tube de Section Circulaire, Thése de Docteur-Ingènieur. Faculté des Sciences de Paris (1968).Google Scholar
  2. 2.
    A. R. Sarabi, “Laminarisation sous l'Influence de la Convection Naturelle dans un Ecoulement Ascendant, Thése de Docteur-Ingénieur. Faculté des Sciences de Paris (1971).Google Scholar
  3. 3.
    B. S. Petukhov and B. K. Strigin, “Experimental investigation of heat transfer in viscosity-inertial-gravitational fluid flow in vertical pipes,” Teplofiz. Vys. Temp.,6, No. 5 (1968).Google Scholar
  4. 4.
    A. F. Polyakov, “Boundaries and nature of the beginning of the influence of thermogravitational forces on the turbulent flow and heat transfer in vertical pipes,” Teplofiz. Vys. Temp.,11, No. 1 (1973).Google Scholar
  5. 5.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics [in Russian], Part 1, Nauka, Moscow (1965).Google Scholar
  6. 6.
    B. W. Hall and P. H. Price, “Interaction between a turbulent free convection layer and a downward forced flow,” in: Heat and Mass Transfer by Combined Forced and Natural Convection, London (1971).Google Scholar
  7. 7.
    A. G. Kirdyashkin, Structure of Thermal Gravitational Flows near a Heat-Transfer Surface, Abstract of Dissertation for Doctorate of Technical Science, Institute of Thermophysics, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1975).Google Scholar
  8. 8.
    G. F. Scheele and T. J. Hanratty, “Effect of natural convection instabilities on rates of heat transfer at low Reynolds numbers,” AIChE J.,9, No. 2 (1963).Google Scholar
  9. 9.
    W. G. Brown, “Die Überlagerung von erzwungener und natürlicher Konvektion bei niedrigen Durchs:atzen in einem lotrachten Rohr,” VDI Forschungsh., No. 480 (1960).Google Scholar
  10. 10.
    G. F. Scheele, E. M. Rosen, and T. J. Hanratty, “Effect of natural convection on transition to turbulence in vertical pipes,” Can. J. Chem. Eng.,38, 67 (1960).Google Scholar
  11. 11.
    A. F. Polyakov, “Viscosity-gravitational flow in pipes under the slight influence of thermogravitation,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 122–130 (1977).Google Scholar
  12. 12.
    B. S. Petukhov and V. V. Kirilov, “On the question of heat transfer during turbulent fluid flow in pipes,” Teploenergetika, No. 4 (1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • A. F. Polyakov
    • 1
  1. 1.Moscow

Personalised recommendations