Journal of Applied Mechanics and Technical Physics

, Volume 34, Issue 5, pp 725–733 | Cite as

Determination of stress intensity factors and crack-opening stresses from jumps in crack-edge displacements

  • V. N. Maksimenko
Article
  • 28 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Stress Intensity Intensity Factor Stress Intensity Factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. F. Rubicki, J. R. Shadley, and W. S. Shealy, “A consistent-splitting model for experimental residual stress analysis,” Exp. Mech.,23, No. 4 (1983).Google Scholar
  2. 2.
    N. J. Rendler and I. Vigness, “Hole-drilling strain-gage method of measuring residual stress,” ibid.,6, No. 12 (1966).Google Scholar
  3. 3.
    V. Chen and I. Finin, “Method of measuring axisymmetric longitudinal residual stresses in thin-walled cylinders welded with annular welds,” Teor. Osn. Inzh. Raschet., Mir, Moscow, No. 3 (1985).Google Scholar
  4. 4.
    T. Torri, K. Houda, T. Fujibayashi, and T. Hamano, “A method of evaluating crack opening stress intensity factors based on opening displacements along a crack, JASME, Intern. J. Ser. I.,33, No. 2 (1990).Google Scholar
  5. 5.
    V. A. Vainstok and P. Y. Kravets, “Estimation of stress intensity factors and nominal stresses from discrete COD values,” Eng. Fract. Mech.,38, Nos. 4 and 5 (1991).Google Scholar
  6. 6.
    A. D. Dement'ev, “Calculation of stress intensity at the tip of a through crack from extensometric data,” Uch. Zap. TsAGI,18, No. 5 (1987).Google Scholar
  7. 7.
    F. P. Chiang and T. V. Haveesh, “Three-dimensional crack tip deformation measured by laser speckles,” Proc. SEM Conf. Exp. Mech., Las Vegas, June, 1985, Brookfield (1985).Google Scholar
  8. 8.
    B. R. Durig, S. R. McNeill, M. A. Sutton, et al., “Determination of mixed mode stress intensity factor using digital image correlation,” 6th Congr. Exp. Mech., Vol. 1, Portland, 1988: Proc., London (1988).Google Scholar
  9. 9.
    N. Miura, S. Sakai, and H. Okamura, “A determination of mode I stress intensity factor from photoelastic isochromatic fringe patterns assisted by image processing technique,” Ninth Intern. Conf. Exp. Mech., Copenhagen, 1990: Proc., Copenhagen (1990).Google Scholar
  10. 10.
    N. Narendran, A. Shukla, and S. Letcher, “Application of fiber optic sensors to fracture mechanics problems,” Eng. Fract. Mech.,38, No. 6 (1991).Google Scholar
  11. 11.
    S. G. Lekhnitskii, Anisotropic Plates [in Russian], GITTL, Moscow (1957).Google Scholar
  12. 12.
    V. N. Maksimenko, “Problem of a crack in an anisotropic half-plane reinforced by elastic cover plates,” Din. Sploshnoi Sredy,99 (1970).Google Scholar
  13. 13.
    F. D. Gakhov, Boundary-Value Problems, Fizmatgiz, Moscow (1963).Google Scholar
  14. 14.
    V. V. Panasyuk (ed.), Fracture Mechanics and Strength of Materials: Handbook [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  15. 15.
    V. N. Maksimenko, “Limit equilibrium of an anisotropic plate weakened by an elliptical hole and a system of cracks of complex form,” Uch. Zap. TsAGI,18, No. 3 (1987).Google Scholar
  16. 16.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products, Nauka, Moscow (1971).Google Scholar
  17. 17.
    S. M. Belotserkovskii and I. K. Lifanov, Numerical Methods in Singular Integral Equations [in Russian], Nauka, Moscow (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. N. Maksimenko
    • 1
  1. 1.Novosibirsk

Personalised recommendations