Journal of Applied Mechanics and Technical Physics

, Volume 34, Issue 5, pp 660–668 | Cite as

Propagation of a boundary disturbance in a stratified gas for arbitrary knudsen number

  • D. A. Vereshchagin
  • S. B. Leble
  • A. K. Shchekin


Mathematical Modeling Mechanical Engineer Industrial Mathematic Knudsen Number Boundary Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C. Cercignani, Theory and Application of the Boltzmann Equation, Elsevier, North-Holland-New York (1976).Google Scholar
  2. 2.
    G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics, American Mathematical Society, Providence, RI (1963).Google Scholar
  3. 3.
    L. Sirovich and J. K. Thurber, “Plane-wave propagation in kinetic theory,” J. Math. Phys.,8, No. 4 (1967).Google Scholar
  4. 4.
    T. G. Richardson and L. Sirovich, “The sound-wave boundary-value problem in kinetic theory,” J. Math. Phys.,12, No. 8 (1971).Google Scholar
  5. 5.
    J. P. Thomas, Jr. and C. E. Siewert, “Sound-wave propagation in a rarefied gas,” Trans. Theory Stat. Phys.,8, 219 (1979).Google Scholar
  6. 6.
    K. Aoki and C. Cercignani, “A technique for time-dependent boundary-value problems. 2. Application to sound propagation,” ZAMP,35, No. 3 (1984).Google Scholar
  7. 7.
    S. K. Loyalka and T. C. Cheng, “Sound-wave propagation in a rarefied gas,” Phys. Fluids,22, No. 5 (1979).Google Scholar
  8. 8.
    A. K. Shchekin, S. B. Leble, and D. A. Vereshchagin, Introduction to the Physical Kinetics of Rarefied Gases [in Russian], Kaliningrad State University (1990).Google Scholar
  9. 9.
    S. V. Vallander, “New kinetic equations in the theory of monatomic gases,” Dokl. Akad. Nauk SSSR,131, No. 1 (1960); “Problems and equations for aerodynamics of rarefied gases,” in: Aerodynamics of Rarefied Gases [in Russian], No. 1, Leningrad State University (1963).Google Scholar
  10. 10.
    R. G. Barantsev, “Method of integral moment kinetic equations,” Dokl. Akad. Nauk SSSR,151, No. 5 (1963).Google Scholar
  11. 11.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • D. A. Vereshchagin
    • 1
  • S. B. Leble
    • 1
  • A. K. Shchekin
    • 1
  1. 1.Kaliningrad

Personalised recommendations