Asymptotic curve of the scattering of the products of a steady-state detonation

  • L. A. Merzhievskii
  • V. A. Filimonov


Mathematical Modeling Mechanical Engineer Industrial Mathematic Asymptotic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. Hill and D. C. Pack, “An investigation, by the method of characteristics, of the lateral expansion of the gases behind a detonation slab of explosive,” Proc. Roy. Soc., Ser. A., No. 1027 (1947).Google Scholar
  2. 2.
    A. A. Deribas, The Physics of Explosion Hardening and Welding [in Russian], Izd. Nauka, Novosibirsk (1972).Google Scholar
  3. 3.
    A. A. Deribas and G. E. Kuz'min, “The motion of a metallic tube under the action of explosion products,” in: The Dynamics of Continuous Media [in Russian], No. 8, Izd. Inst. Gidrodinam. Sibirsk. Otd. Akad. Nauk SSSR, Novosibirsk (1971).Google Scholar
  4. 4.
    O. N. Katskova and Yu. D. Shmyglevskii, “Axisymmetrical supersonic flow of a freely expanding gas with a flat transitional surface,” in: Computational Mathematics [in Russian], Izd. Akad. Nauk SSSR, Moscow (1957).Google Scholar
  5. 5.
    F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, V. P. Chelyshev, and B. I. Shekhter, The Physics of Explosion [in Russian], Izd. Nauka, Moscow (1975).Google Scholar
  6. 6.
    V. F. Lobanov and Yu. I. Fadeenko, “Scattering of real detonation products from the lateral surface of a charge,” in: The Dynamics of Continuous Media [in Russian], No. 7, Izd. tost. Gidrodinam. Sibirsk. Otd. Akad. Nauk SSSR, Novosibirsk (1971).Google Scholar
  7. 7.
    W. A. Walther and N. M. Sternberg, “The Chapman-Jouguet is entrope and the underwater shock wave performance of pentolite,” in: Proceedings of the Fourth International Symposium on Detonation, White Oak, Maryland, 1965, Office of Naval Research, Washington (1967).Google Scholar
  8. 8.
    K. P. Stanyukovich, Not-Fully-Established Motions of a Continuous Medium [in Russian], Izd. Nauka, Moscow (1971), p. 423.Google Scholar
  9. 9.
    A. I. Hodges, “The drag coefficient of very high velocity spheres,” J. Aeronaut. Sci.,24, No. 10, 755 (1957).Google Scholar
  10. 10.
    V. M. Titov and Yu. I. Fadeenko, “Through puncture with meteor impact,” Kosmich. Issled.,10, No. 4, 589 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • L. A. Merzhievskii
    • 1
  • V. A. Filimonov
    • 1
  1. 1.Novosibirsk

Personalised recommendations