Polymer Mechanics

, Volume 4, Issue 3, pp 342–346 | Cite as

Vibrocreep of polymer materials

3. Polyethylen; nonisothermal deformation
  • R. D. Maksimov
  • Yu. S. Urzhumtsev
Article
  • 24 Downloads

Abstract

The vibrocreep of low-density polyethylene (LDP) in uniaxial tension has been investigated in the presence of vibration in the direction of action of the constant load. The material was deformed under nonisothermal conditions owing to heating caused by the dissipation of vibrational energy. Superimposing vibrations leads to a considerable increase in creep rate. It is shown that this increase can not be explained solely in terms of the rise in temperature due to heating of the material; there is also a dynamic creep acceleration effect. Avariant of the vibrocreep approximation with allowance for the dynamic and temperature creep acceleration effects is proposed.

Keywords

Polymer Polyethylene Polymer Material Creep Rate Considerable Increase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. I. Barenblatt, Yu. I. Kozyrev, N. I. Malinin, D. Ya. Pavlov, and S. A. Shesterikov, ZhPMTF [Journal of Applied Mechanics and Technical Physics] 5, 68, 1965; DAN, Matem. i. fiz.,166, 813, 1966.Google Scholar
  2. 2.
    G. I. Barenblatt, PMM,30, 73, 1966.Google Scholar
  3. 3.
    P. M. Ogibalov and V. I. Moroz-Shobolova, Mekh. polim. [Polymer Mechanics], 1, 46, 1967.Google Scholar
  4. 4.
    Yu. S. Urzhumtsev and R. D. Maksimov, Mekh. polim. [Polymer Mechanics],1, 34, 1968.Google Scholar
  5. 5.
    A. K. Malmeister, Elasticity and Anelasticity of Concrete [in Russian], Riga, 1957.Google Scholar
  6. 6.
    A. J. Kennedy, Proc. Int. Conf. Fat. Met., 4, 401, 1956.Google Scholar
  7. 7.
    G. L. Slonimskii and P. I. Alekseev, DAN,106, 1053, 1956.Google Scholar
  8. 8.
    A. K. Malmeister, Mekh. polim. [Polymer Mechanics], 2, 197, 1966.Google Scholar
  9. 9.
    R. D. Maksimov and Yu. S. Urzhumtsev, Mekh. polim. [Polymer Mechanics], 2, 246, 1968.Google Scholar
  10. 10.
    J. D. Ferry, Viscoelastic Properties of Polymers [Russian translation], Moscow, 1963.Google Scholar
  11. 11.
    Yu. S. Urzhumtsev and R. D. Maksimov, Mekh. polim. [Polymer Mechanics], 2, 379, 1968.Google Scholar
  12. 12.
    R. D. Maksimov, A. A. Rutkis, V. P. Mochalov, A. P. Smala, and Yu. S. Urzhumtsev, Mekh. polim. [Polymer Mechanics], 2, 372, 1968.Google Scholar
  13. 13.
    S. B. Ratner and V. I. Korobov, Mekh. polim. [Polymer Mechanics], 3, 93, 1965.Google Scholar
  14. 14.
    Yu. S. Urzhumtsev, A. V. Putans, and Z. V. Kalnroze, Mekh. polim. [Polymer Mechancis], 1, 24, 1968.Google Scholar
  15. 15.
    V. A. Kargin and G. L. Slonimskii, DAN,62, 239, 1948; ZhFKh,23, 569, 1949.Google Scholar
  16. 16.
    I. A. Faucher, Trans. Soc. Rheol., 3, 81, 1959.Google Scholar
  17. 17.
    R. A. Shapery, J. Appl. Phys.,35, 1451, 1964.Google Scholar
  18. 18.
    R. A. Shapery, Raketn. tekhn. i kosm., 5, 55, 1964; Prikl. mekh., 3, 150, 1965.Google Scholar
  19. 19.
    G. I. Buyanov, V. D. Kasyuk, N. I. Malinin, and B. I. Panshin, Mekh. polim. [Polymer Mechanics], 3, 330, 1966.Google Scholar
  20. 20.
    G. E. Warnaka and H. T. Miller, Rubb. Chem. Technol.,30, 1421, 1966.Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • R. D. Maksimov
    • 1
  • Yu. S. Urzhumtsev
    • 1
  1. 1.Institute of Polymer Mechanics AS Latvian SSRRiga

Personalised recommendations