Shock waves in dilatant and nondilatant media

  • S. G. Artyshev
  • S. Z. Dunin


Mathematical Modeling Shock Wave Mechanical Engineer Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. S. Grigoryan, “Questions in the mathematical theory of the deformation and breakdown of hard rocks,” Prikl. Mat. Mekh.,31, No. 4 (1967).Google Scholar
  2. 2.
    A. B. Bagdasaryan, “Exact solutions of the problem of the action of the explosion of a concentrated charge in a brittle solid medium,” Izv. Akad. Nauk ArmSSR, Mekh.,21, No. 5 (1968).Google Scholar
  3. 3.
    A. B. Bagdasaryan, Calculation of the action of an explosion in brittle rock,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1970).Google Scholar
  4. 4.
    V. N. Nikolaevskii, “The connection between volumetric and shear deformations and shock waves in soft soils,” Dokl. Akad. Nauk SSSR,175, No. 5 (1967).Google Scholar
  5. 5.
    É. I. Andrianskii and V. N. Koryavov, “A shock wave in a variably densified medium,” Dokl. Akad. Nauk SSSR,128, No. 2 (1959).Google Scholar
  6. 6.
    A. S. Kompaneets, “Shock waves in a plastic densified medium,” Dokl. Akad. Nauk SSSR,109, No. 1 (1956).Google Scholar
  7. 7.
    E. Fachioli and A. H. Ang, “A discrete Euler model of the propagation of a spherical wave in a compressed medium,” in: The Action of a Nuclear Explosion [Russian translation], Mir, Moscow (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • S. G. Artyshev
    • 1
  • S. Z. Dunin
    • 1
  1. 1.Moscow

Personalised recommendations