Skip to main content
Log in

Cooling systems of rotating molds

  • Review
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

In the last 20 years the method of high-speed (as a rule, higher than 103 K/sec) metal solidification from the liquid state has found wide application in manufacture of materials. It offers the possibility to fix metastable phases, to extend the range of solid solutions, to form an amorphous state, and thereby to obtain materals whose physicomechanical properties are superior to those of traditional alloys [1]. Methods of high-speed solidification are also employed in the manufacture of either disperse particles (powders) or continuous products (strips, sheets, wires).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

area, m2

a:

acceleration, m/sec2

B, b:

width, m

C:

heat capacity, J/(kg·K)

f:

resistance coefficient

D:

diameter, m

g:

gravitational acceleration, m/sec2

H, h:

height, m

K, k:

coefficients

L,l :

length, m

Δl :

free height of the melt, m

M:

output, kg/sec

m:

number of grooves

m:

mass flow rate of the liquid, kg/sec

n:

rotation frequency, sec−1

P:

pressure, N/m2

ΔP:

pressure difference, N/m2

Q:

heat flux, W

q:

specific heat flux, W/m2

R:

radius, m

r:

latent heat of crystallization, J/kg

r* :

latent heat of vaporization, J/kg

s:

width of the connecting neck of the grooves, m

T:

temperature, K

ΔT:

temperature gradient, K

t:

groove width, m

t(x):

width of the liquid layer in any cross section of a groove, m

W:

volume, m3

x:

coordinate, m

Π:

porosity

Πp:

permeability, m2

α:

heat transfer coefficient, W/(m2·K)

β:

half-angle at the vertex of a triangular groove, deg

γ:

angle of onset of gripping of the liquid-metal strip, deg

δ:

thickness, m

θ:

wetting angle, deg

λ:

thermal conductivity, W/ (m·K)

μ:

dynamic viscosity, N/ (secm2)

v :

kinematic viscosity, m2/sec

Ξ:

resistance coefficient

ρ:

density, kg/m3

σ:

surface tension, N/m

τ:

time, sec

ϕ:

angle of inclination of the side walls, deg

Nu, Pe, Pr, Re:

Nusselt, Peclet, Prandtl, and Reynolds numbers

′:

radial CHP

′':

axial CHP

a:

air

in:

inner

h:

hydraulic

gr:

gravitational

l :

liquid

ev:

evaporator

g:

groove

ch:

channel

cn:

condenser

cp:

capillary-porous

mo:

mold

cr:

critical

s:

strip

gb:

gate box

sa:

saturated (saturation)

r:

rated

se:

separated

co:

cooling

v:

vapor

b:

bubble

s.t:

surface tension

re:

reduced

ms:

melt superheating

m:

melt

hu:

hub

w:

wall

c:

centripetal

sl:

slot

max:

maximum

min:

minimum

References

  1. R. A. Andrevskii and A. A. Nuzhdin, in: Powder Metallurgy [in Russian], Vol. 2 (Results of Science and Technology, VINITI Akad. Nauk SSSR), Moscow (1986), pp. 3–64.

    Google Scholar 

  2. “A method of manufacture of wire,” Inventor's Application (Japan) 60-72644, MKI B22 D 11/01, 11/10, 1985.

  3. V. A. Vasil'ev and P. S. Mitin, Izv. Akad. Nauk SSSR, Metally, No. 6, 71–76 (1982).

    Google Scholar 

  4. T. R. Antony and H. E. Cline, J. Appl. Phys.50, No. 1, 239–242 (1979).

    Google Scholar 

  5. I. V. Zolotukhin, Physical Properties of Amorphous Materials [in Russian], Moscow (1986).

  6. I. S. Miroshnichenko, Quenching from a Liquid State [in Russian], Moscow (1982).

  7. “A method of obtaining a thin-sheet metal,” Inventor's Application (Japan) 61-1222, MKI B 22 D 11/06, 1979.

  8. A. N. Abramenko, A. S. Kalinichenko, M. A. Antonevich, and E. D. Sychikov, Inzh.-Fiz. Zh.,55, No. 1, 117–122 (1988).

    Google Scholar 

  9. A. N. Abramenko, A. S. Kalinichenko, M. A. Antonevich, and E. D. Sychikov, in: Scientific and Applied Problems of Power Engineering [in Russian], Minsk (1988), pp. 51–55.

  10. A. N. Abramenko and A. S. Kalinichenko, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Tékh. Navuk, No. 4, 56–60 (1990).

    Google Scholar 

  11. A. I. Belyaev, O. S. Bochvar, N. I. Buinov, et al., Metal Science of Aluminium and Its Alloys, Handbook [in Russian], 2nd edition, Moscow (1983).

  12. J. K. Smithells, Metals, Reference Book [Russian translation], Moscow (1980).

  13. N. I. Koshkin and M. G. Shirkevich, Handbook on Elementary Physics [in Russian], Moscow (1972).

  14. L. L. Vasil'ev and V. V. Khrolenok, “Heat and mass transfer in centrifugal heat pipes,” Preprint, ITMO Akad. Nauk BSSR, No. 42 [in Russian], Minsk (1987).

  15. E. Herrmann, Handbuch des Stranggiessens, Aluminium-GmbH, Düsseldorf (1958).

    Google Scholar 

  16. E. F. Baranovskii and Yu. A. Losyuk, in: Heat Transfer between a Casting and a Mold [in Russian], Minsk (1967), pp. 315–317.

  17. A. I. Veinik, The Chill Mold [in Russian], Minsk (1972).

  18. “Cooling rolls for manufacturing rapidly solidified metal strip sheet,” Inventor's Application (EPO) 0 260 835, MKI B 22 D 11/06, 1988.

  19. “A cooling drum,” Inventor's Application (Japan) 61-138, MKI B 22 D 11/06, 1986.

  20. “A cooling drum,” Inventor's Application (Japan) 61-139, MKI B 22 D 11/06, 1986.

  21. “A cooling drum,” Inventor's Application (Japan), 61-7140, MKI B 22 D 11/06, 1986.

  22. “A two-piece casting wheel,” Patent (USA) No. 4 537 239, MKI B 22 D 11/06, 1985.

  23. “A roll with cooling-liquid circulation,” Inventor's Application (France) 25 87 247, MKI B 22 D 11/06, 1987.

  24. “Device for the continuous casting of rapidly solidifying material,” Inventor's Application (FRG) No. 3 617 608, MKI B 22 D 11/06, 1987.

  25. “Two-roll device for continuous casting,” Inventor's Application (FRG) No. 38 39 110, MKI 3 22 D 11/06, 1989.

  26. V. P. Isachenko, V. A. Osipova, and A. M. Sukomel, Heat Transfer [in Russian], Moscow (1975).

  27. O. V. Chernyak and G. B. Rybchinskaya, Fundamentals of Heat Engineering and Hydraulics [in Russian], Moscow (1979).

  28. V. A. Grigor'ev and V. M. Zorin (eds.), Theoretical Principles of Heat Engineering. Heat Engineering Experiment, Handbook [in Russian], Moscow (1988).

  29. B. S. Petukhov, Heat Transfer and Resistance in Laminar Flow of a liquid in Pipes [in Russian], Moscow (1967).

  30. G. K. Batchelor, An Introduction to Fluid Dynamics [Russian translation], Moscow (1973).

  31. L. G. Loitsyanskii, Fluid and Gas Dynamics [in Russian], Moscow (1970).

  32. A. N. Abramenko and A. S. Kalinichenko, “A device for obtaining a metal strip,” Inventor's Certificate 1696112, Byul. Izobret., No. 45 (1991).

  33. A. N. Abramenko and A. S. Kalinichenko, “A device for the cooling of a roll-mold,” Final Decision No. 4839373/02.

  34. “A method of casting with pool cooling of the substrate casting surface,” Patent (USA) No. 4 489 773, MKI B 22 D 11/06, 1985.

  35. “A cooling wheel,” Patent (USA) No. 4 502 528, MKI B 22 D 11/06, 1985.

  36. “A method of manufacture of a thin metal wire,” Inventor's Aplication (Japan) 61-43148, MKI B 22 D 11/06, 1985.

  37. “A method of cooling of rotary rolls,” Inventor's Application (Japan) 61-43148, MKI B 22 D 11/06, 1986.

  38. A. N. Abramenko et al., “A device for manufacture of a metal strip,” Inventor's Centificate 1452649, Byul. Izobret., No. 3 (1989).

  39. A. N. Abramenko, A. S. Kalinichenko, G. V. Bergmann, and N. A. Abramenko, “A device for manufacture of metal strips,” Inventor's Certificate 1785787, Byul. Izobret., No. 3 (1993).

  40. L. S. Tong, Boiling Heat Transfer and Two-Phase Flow, John Wiley and Sons, Inc., New-York-London-Sydney (1965).

    Google Scholar 

  41. N. Zuber, “Hydrodynamic aspects of boiling heat transfer,” USAEC Rept. AECU-4439, Univ. Calif., Los Angeles (1959).

    Google Scholar 

  42. J. M. Adams, “A study of the critical heat flux in an accelerating pool boiling system,” NSF G 19697, Univ. Washington (1962).

  43. D. A. Labuntsov and Z. S. Abdusatturov, TeploBnergetika, No. 3, 12–18 (1963).

    Google Scholar 

  44. V. I. Morozkin, A. I. Amenitskii, and I. T. Alad'ev, Teplofiz. Vys. Temp.,1, 107–110 (1963).

    Google Scholar 

  45. A. N. Abramenko, A. S. Kalinichenko, Yu. K. Krivosheev, and A. A. Nikiforov, Izv. Vyssh. Uchebn. Zaved., Pnergetika, No. 10, 81–85 (1990).

    Google Scholar 

  46. A. N. Abramenko and A. S. Kalinichenko, in: Current Problems of Energy Production and Consumption in the BSSR, Minsk (1988), pp. 77–79.

  47. A. N. Abramenko and A. S. Kalinichenko, Izv. Vyssh. Uchebn. Zaved., Énergetika, No. 2, 109–112 (1989).

    Google Scholar 

  48. A. N. Abramenko, A. S. Kalinichenko, and Yu. A. Malevich, “A device for manufacture of a metal strip,” Inventor's Certificate 1676747, Byul. Izobret., No. 34 (1991).

  49. A. N. Abramenko and A. S. Kalinichenko, Inzh.-Fiz. Zh.,59, No. 1, 20–26 (1990).

    Google Scholar 

  50. É. É. Shpil'rain (ed.), Heat Pipes [in Russian], Moscow (1972).

  51. “A cooling drum for obtaining a metal with an amorphous or microcrystalline structure,” Inventor's Application (Japan) 61-7141, MKI B 22 D 11/06, B 21 B 27/08, 1982.

  52. “A cooling drum for obtaining a metal with an amorphous or microcrystalline structure,” Inventor's Application (Japan) 61-7141, MKI B 22 D 11/06, B 21 B 27/08, 1982.

  53. S. W. Chi, Heat Pipes: Theory and Practice, The George Washington Univ., Washington (1976).

    Google Scholar 

  54. A. N. Abramenko, A. S. Kalinichenko, and N. P. Zhvavyi, “A device for obtaining metal strips by the method of rapid cooling from the liquid state,” Inventor's Certificate 1526892, Byul. Izobret., No. 45 (1989).

  55. A. N. Abramenko, A. S. Kalinichenko, and Yu. K. Krivosheev, in: Heat Pipes and Heat Exchangers: from Science to Practice, Minsk (1990), pp. 96–104.

  56. A. N. Abramenko, A. S. Kalinichenko, and Yu. K. Krivosheev, Izv. Vyssh. Uchebn. Zaved. Energetika, No. 3, 89–93 (1990).

    Google Scholar 

  57. R. Bresler and P. White, Teploperedacha,92, No. 2, 126–132 (1970).

    Google Scholar 

  58. L. I. Roizen and I. N. Dul'kin, Heat Calculation of Finned Surfaces [in Russian], Moscow (1977).

  59. H. Wong, Fundamental Formulas and Data on Heat Transfer for Engineers [Russian translation], Moscow (1979).

  60. L. L. Vasiliev, A. N. Abramenko, and L. G. Kanonchik, AIAA Journal,17, No. 12, 1395–1401 (1979).

    Google Scholar 

  61. A. N. Abramenko, V. A. Khlebtsevich, and A. S. Kalinichenko, “A device for patenting of steel wire,” Inventor's Certificate 1684348, Byul. Izobret., No. 38 (1991).

  62. A. N. Abramenko and A. S. Kalinichenko, “A device for continuous casting of metal strips,” Inventor's Certificate 1668021, Byul. Izobret., No. 29 (1991).

  63. A. N. Abramenko, A. S. Kalinichenko, and Yu. K. Krivosheev, Inzh.-Fiz. Zh.,61, No. 1, 26–32 (1991).

    Google Scholar 

  64. L. L. Vasil'ev, A. N. Abramenko, and L. E. Kanonchik, Raket. Tekh. Kosmon., (AIAA Journal),17, No. 12, 110–118 (1979).

    Google Scholar 

Download references

Authors

Additional information

Belorussian State Polytechnic Academy, Minsk, Belarus. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 64, No. 4, pp. 492–507, April, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramenko, A.N., Kalinichenko, A.S. & Krivosheev, Y.K. Cooling systems of rotating molds. J Eng Phys Thermophys 64, 401–414 (1993). https://doi.org/10.1007/BF00859228

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00859228

Keywords

Navigation