Skip to main content
Log in

Kinetics of heat transfer from a rarefied plasma to a spherical particle emitting thermoelectrons

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

It is shown that thermoelectron emission from the surface of a particle leads to a substantial increase in the intensity of heat transfer from a plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR :

Richardson constant

e:

electron charge

E j :

density of flux of kinetic energy

Ii :

ionization energy

J j :

number flux density of plasma particles

JTe :

density of flux of thermoelectrons

k:

Boltzmann constant

l j :

free-path length

mj :

mass

Nj :

number density

Qj :

heat flux density

r:

spatial coordinate

rD :

Debye radius

R:

particle radius

Tj :

temperature

v :

mean thermal velocity

ϕ:

plasma potential

ϕj :

floating potential of a particle

φe :

electron work function

a:

molecules

j:

e, i

e:

plasma electrons

i:

ions

h:

heavy particles of a plasma (molecules and ions)

s:

surface

Te:

thermoelectrons

∞:

unperturbed region of a plasma far from a particle

−:

direction to the side with respect to a particle

References

  1. C. Borgianni, M. Capitelli, F. Cramarossa, et al., Combustion and Flame,13, No. 2, 181–194 (1969).

    Google Scholar 

  2. E. V. Samuilov and A. V. Gorbatov, Inzh.-Fiz. Zh.,34, No. 3, 539–540 (1978).

    Google Scholar 

  3. N. N. Rykalin, A. A. Uglov, Yu. N. Lokhov, and A. G. Gnedovets, Teplofiz. Vysok. Temp.,19, No. 3, 557–565 (1981).

    Google Scholar 

  4. Y. C. Lee, Y. P. Chiou, and E. Pfender, Plasma Chemistry and Plasma Processing,5, No. 4, 391–414 (1985).

    Google Scholar 

  5. X. Chen and P. He, Plasma Chemistry and Plasma Processing,6, No. 4, 313–333 (1986).

    Google Scholar 

  6. A. G. Gnedovets, Inzh.-Fiz. Zh.,58, No. 1, 95–100 (1990).

    Google Scholar 

  7. A. A. Uglov and A. G. Gnedovets, Plasma Chemistry and Plasma Processing,11, No. 2, 251–267 (1991).

    Google Scholar 

  8. A. G. Gnedovets, A. V. Gusarov, and A. A. Uglov, Inzh.-Fiz. Zh.,62, No. 1, 41–46 (1992).

    Google Scholar 

  9. A. G. Gnedovets, A. V. Gusarov, and A. A. Uglov, Inzh.-Fiz. Zh.,62, No. 1, 47–50 (1992).

    Google Scholar 

  10. A. G. Gnedovetz, A. V. Gusarov, and A. A. Uglov, Inzh.-Fiz. Zh.,62, No. 2, 254–260 (1992).

    Google Scholar 

  11. W. Neumann, The Mechanism of the Thermoemitting Arc Cathode, Akademie-Verlag, Berlin (1987).

    Google Scholar 

  12. X. Chen and E. Pfender, Plasma Chemistry and Plasma Processing,2, No. 3, 293–316 (1982).

    Google Scholar 

  13. Y. C. Lee, Y. P. Chiou, and E. Pfender, Plasma Chemistry and Plasma Processing5, No. 4, 391–414 (1985).

    Google Scholar 

  14. I. B. Bernstein and I. N. Rabinowitz, Phys. Fluids,2, No. 2, 112–121 (1959).

    Google Scholar 

  15. Y. S. Chiou, L. Talbot, and D. R. Willis, Phys. Fluids,9, No. 11, 2150–2167 (1966).

    Google Scholar 

  16. J. Laframboise, in: Rarefied Gas Dynamics (ed. J. H. Leeuw), Academic Press, New York-London (1966), Vol. 2, pp. 22–44.

    Google Scholar 

Download references

Authors

Additional information

A. A. Baikov Institute of Metallurgy, Russian Academy of Sciences, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 64, No. 4, pp. 482–486, April, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnedovets, A.G., Gusarov, A.V. & Uglov, A.A. Kinetics of heat transfer from a rarefied plasma to a spherical particle emitting thermoelectrons. J Eng Phys Thermophys 64, 391–395 (1993). https://doi.org/10.1007/BF00859226

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00859226

Keywords

Navigation