Cyclic unsaturated compounds

Communication 32. Thermal transformations of spiro [4,4]-1,3-nonadiene
  • V. A. Mironov
  • A. P. Ivanov
  • Ya. M. Kimel'feld
  • L. I. Petrovskaya
  • A. A. Akhrem
Organic and Biological Chemistry

Conclusions

  1. 1.

    A study was made of the thermal transformations of spiro[4,4]-1,3-nonadiene (I).

     
  2. 2.

    Diene (I) is isomerized to bicyclo[4,3,0]nonadiene (IV) in the temperature range 250–320°. Diene (IV) can be obtained in up to 90% yield in preparative experiments. Consequently, the thermal isomerization of (I) is a new and convenient method for the synthesis of compounds of the hydrindene series.

     
  3. 3.

    We consider the intramolecular 1,2-shift of a substituent from the 5 position of the cyclopentadiene ring to be the mechanism of the isomerization (I)→(IV).

     
  4. 4.

    Bicyclo[4,3,0]nonadiene represents an equilibrium mixture of isomers with a different position of the double bonds in the cyclopentadiene ring, in which bicyclo[4,3,0]-1(5),2-nonadiene (IV) predominates (not less than 80%).

     
  5. 5.

    In the temperature range 350–400° there occurs thermal isomerization of diene (IV) to bicyclo[4, 3,0]-1,5-nonadiene (VI). The indicated transformation is the first example of the isomerization of a substituted cyclopentadiene to a diene with a fixed transoid system of double bonds.

     
  6. 6.

    The thermal dehydrogenation of dienes (IV) and (VI) to indan (VII) takes place at 450–500°. Diene (VI) is an intermediate product in the reaction (IV)→(VII). The transformation (VI)→ (VII) occurs as the result of the direct cleavage of hydrogen, and not by its redistribution between the molecules, since monoolefins and perhydrindan are absent in the reaction products.

     
  7. 7.

    A study was made of the thermal transformations of spiro[4,2]-1,3-heptadiene (II). In contrast to diene (I), diene (II) exhibits a much greater thermal stability, and at 400–500° is converted to a complex mixture of hydrocarbons.

     

Keywords

Hydrocarbon Double Bond Diene Dehydrogenation Spiro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Mironov, B. D. Polkovnikov, É. P. Mikos, T. M. Fadeeva, and A. A. Akhrem, Izv. Akad. Nauk SSSR, Ser. Khim., 129 (1970).Google Scholar
  2. 2.
    V. A. Mironov, E. V. Sobolev, and A. N. Elizarova, Tetrahedron,19, 1939 (1963).Google Scholar
  3. 3.
    K. Alder and R. Muders, Chem. Ber.,91, 1083 (1958).Google Scholar
  4. 4.
    J. W. de Haan and H. Kloosterziel, Rec. Trav. Chim.,84, 1594 (1965).Google Scholar
  5. 5.
    J. W. de Haan and H. Kloosterziel, Rec. Trav. Chim.,87, 298 (1968).Google Scholar
  6. 6.
    V. A. Mironov, V. S. Pashegorova, T. M. Fadeeva, and A. A. Akhrem, Izv. Akad. Nauk SSSR, Ser. Khim., 182 (1968).Google Scholar
  7. 7.
    V. A. Mironov, V. S. Pashegorova, T. M. Fadeeva, and A. A. Akhrem, Tetrahedron Letters, 3997 (1968).Google Scholar
  8. 8.
    B. F. Hallam and P. L. Pauson, J. Chem. Soc., 646 (1958).Google Scholar
  9. 9.
    B. A. Kazanskii, E. V. Sobolev, V. T. Aleksanyan, L. A. Nakhapetyan, and M. Yu. Lukina, Dokl. Akad. Nauk SSSR,159, 839 (1964).Google Scholar
  10. 10.
    R. Ya. Levina and T. I. Tantsyreva, Dokl. Akad. Nauk SSSR,89, 697 (1953).Google Scholar
  11. 11.
    C. F. Wilcox and R. R. Craig, J. Am. Chem. Soc.,83, 3866 (1961).Google Scholar
  12. 12.
    R. Ya. Levina, N. N. Mezentsova, and O. V. Lebedev, Zh. Obshch. Khim.,25, 1097 (1955).Google Scholar
  13. 13.
    C. L. Wilson, J. Chem. Soc., 48 (1945).Google Scholar
  14. 14.
    W. Borche and M. Pommer, Chem. Ber.,54, 102 (1921).Google Scholar
  15. 15.
    W. M. Kutz, J. E. Nickels, J. J. McGovern, and B. B. Corson, J. Am. Chem. Soc.,70, 4026 (1948).Google Scholar
  16. 16.
    B. A. Kazanskii, A. F. Plate, and B. M. Terent'eva, Organic Syntheses [in Russian], Vol. 2 (1952), p. 70.Google Scholar
  17. 17.
    S. I. Khromov, E. S. Balenkova, O. E. Lishenok, and B. A. Kazanskii, Dokl. Akad. Nauk SSSR,135, 627 (1960).Google Scholar
  18. 18.
    A. L. Liberman, O. V. Bragin, and B. A. Kazanskii, Dokl. Akad. Nauk SSSR,111, 1039 (1956).Google Scholar
  19. 19.
    R. Mecke and F. Langenbucker, Infrared Spectra of Selected Chemical Compounds, No. 945.Google Scholar
  20. 20.
    V. A. Mironov, S. N. Kostina, and A. N. Elizarova, Izv. Akad. Nauk SSSR, Ser. Khim., 875 (1964).Google Scholar
  21. 21.
    A. N. Elizarova and V. A. Mironov, “Problems in Organic Synthesis,” Zh. Obshch. Khim., 68 (1965).Google Scholar
  22. 22.
    V. A. Mironov and A. A. Akhrem, Izv. Akad. Nauk SSSR, Ser. Khim., 698 (1967).Google Scholar

Copyright information

© Consultants Bureau 1971

Authors and Affiliations

  • V. A. Mironov
    • 1
  • A. P. Ivanov
    • 1
  • Ya. M. Kimel'feld
    • 1
  • L. I. Petrovskaya
    • 1
  • A. A. Akhrem
    • 1
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRUSSR

Personalised recommendations