Advertisement

Investigation of aromatic triplet molecules in polystyrene by the method of pulsed radiolysis

  • Yu. B. Shekk
  • M. V. Alfimov
  • V. I. Nikiforov
Physical Chemistry
  • 24 Downloads

Conclusions

  1. 1.

    The optical absorption spectra of a number of triplet excited aromatic molecules in polystyrene were investigated by the method of pulsed radiolysis. For molecules with known coefficients of extinction of triplet-triplet absorption the radiation yields of the triplet states of the additive were determined.

     
  2. 2.

    The quenching of triplet molecules by radiolysis products as a result of nonhomogeneous reactions in spurs was established. The lifetime of spurs in polystyrene is∼10−3 sec.

     

Keywords

Radiation Absorption Spectrum Polystyrene Optical Absorption Triplet State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. V. Alfimov, N. Ya. Buben, A. I. Pristupa, and V. N. Shamshev, Dokl. Akad. Nauk SSSR,156, 630 (1964); Optika i Sprektroskopiya,20, 424 (1966).Google Scholar
  2. 2.
    M. V. Alfimov and Y. B. Shekk, Khim. Vys. Énerg.,1, 235 (1967).Google Scholar
  3. 3.
    T. J. Kemp, J. P. Roberts, G. A. Salmon, and G. F. Thompson, Proceed. II. Tihany Symp. Rad. Chem., Akademiai Kiado, Budapest (1967), p. 333.Google Scholar
  4. 4.
    S. K. Ho, S. Siegel, and H. A. Schwarz, J. Phys. Chem.,71, 4527 (1967).Google Scholar
  5. 5.
    E. J. Hormats and F. C. Unterleitner, J. Phys. Chem.,69, 3677 (1965).Google Scholar
  6. 6.
    O. A. Val'dner, A. A. Glazkov, and A. I. Finogenov, Pribory i Tekhn. Éksperim., No. 3, 29 (1963).Google Scholar
  7. 7.
    J. P. Keene, J. Sci. Instrum.,41, 493 (1964).Google Scholar
  8. 8.
    J. K. Thomas and E. J. Hart, Radiation Res.,17, 408 (1960).Google Scholar
  9. 9.
    G. Porter and M. W. Windsor, Proc. Roy. Soc.,A245, 238 (1958).Google Scholar
  10. 10.
    D. P. Craig and I. G. Ross, J. Chem. Soc., 1589 (1954).Google Scholar
  11. 11.
    R. A. Keller and S. G. Haldey, J. Chem. Phys.,42, 2382 (1965).Google Scholar
  12. 12.
    P. Balk, G. J. Hoijtink, and J. W. H. Schreurs, Recueil Trav. Chim.,76, 813 (1957).Google Scholar
  13. 13.
    P. Bennema, G. J. Hoijtink, J. H. Lupinsky, L. J. Oosterhoff, P. Selier, and J. D. W. van Voorst, Mol. Phys.,2, 431 (1959).Google Scholar
  14. 14.
    V. L. Ermolaev, UspekhiFiz. Nauk,80, 3 (1963).Google Scholar
  15. 15.
    M. V. Alfimov, Dissertation [in Russian], Moscow (1967).Google Scholar
  16. 16.
    I. G. Batekha, M. V. Alfimov, and Yu. B. Shekk, Khim. Vys. Énerg.,3, 282 (1969).Google Scholar
  17. 17.
    G. R. Freman, J. Chem. Phys.,46, 2822 (1967).Google Scholar

Copyright information

© Consultants Bureau 1971

Authors and Affiliations

  • Yu. B. Shekk
    • 1
  • M. V. Alfimov
    • 1
  • V. I. Nikiforov
    • 1
  1. 1.Institute of Chemical PhysicsAcademy of Sciences of the USSRUSSR

Personalised recommendations