Calculation of the rotational transition probabilities of diatomic molecules when they collide with heavy particles

  • A. N. Vargin
  • N. A. Ganina
  • V. K. Konyukhov
  • V. I. Selyakov
Article
  • 44 Downloads

Abstract

The collisional rotational transition probabilities for molecule-molecule and molecule-atom interactions in three-dimensional space are calculated. The quasiclassical approach developed in [1] is used. Expressions are obtained that are suitable for practical calculations of single-quantum and double-quantum rotational transitions in diatomic molecules. The collisional rotational transition probabilities are averaged over the Maxwell velocity distribution and their dependence on the gas temperature is obtained. To illustrate the method the results of a calculation of the probabilities for HCl-HCl, HCl-He, CO-CO interaction are presented.

Keywords

Mathematical Modeling Mechanical Engineer Velocity Distribution Industrial Mathematic Heavy Particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. Takayanagi, “On the inelastic collision between molecules. I,” Prog. Theor. Phys.,8, No. 1, 111 (1952); K. Takayanagi, “On the inelastic collision between molecules. II,” Prog. Theor. Phys.,8, No. 5, 497 (1952); K. Takayanagi and T. Kishimoto, “On the inelastic collision between molecules. Ill,” Prog. Theor. Phys.,9, No. 6, 578 (1953); K. Takayanagi, “Vibrational and rotational transitions in molecular collisions,” Suppl. Prog. Theor. Phys., No. 25 (1963).Google Scholar
  2. 2.
    L. V. Leskov and F. A. Savin, “Relaxation of nonequilibrium gas systems,” Usp. Fiz. Nauk,72, No. 4, 741 (1960); M. N. Safaryan and E. V. Stupochenko, “Rotational relaxation of diatomic molecules in a light inert gas,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 29 (1964); F. J. Zeleznik, “Rotational relaxation in polar gases,” J. Chem. Phys.,47, No. 9, 3410 (1967).Google Scholar
  3. 3.
    C. F. Curtiss and R. B. Bernstein, “Molecular collisions. IX. Restricted-wave approximation for rotational excitation and scattering of diatomic molecules,” J. Chem. Phys.,50, No. 3, 1168 (1968); R. W. Fenstermaker, C. F. Curtiss, R. B. Bernstein, “Molecular Collisions. X. Restricted-distorted-wave-born and first-order sudden approximations for rotational excitation of diatomic molecules,” J. Chem. Phys.,51, No. 6, 2439 (1969).Google Scholar
  4. 4.
    J. J. Everdij, J. I. V. Montfort, and N. F. Verster, “Half-classical calculation of rotational transitions,” Electron, and Atom. Collisions, Abstr. Paper 8 ICPEAC, Belgrad,1, 21 (1973); S. Saha, E. Guha, and A. K. Barua, “Rotational inelasticity in polar diatom-atom scattering: application of the semiclassical time-dependent perturbation theory to Ne-CO and Ne-HCl systems,”1, 84 (1973).Google Scholar
  5. 5.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley (1964); K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves, Academic Press, New York (1959); V. B. Leonas, “Investigation of short-range intermolecular forces,” Usp. Fiz. Nauk,107, No. 1, 29 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. N. Vargin
    • 1
  • N. A. Ganina
    • 1
  • V. K. Konyukhov
    • 1
  • V. I. Selyakov
    • 1
  1. 1.Moscow

Personalised recommendations