Linear thermodynamic systems with memory. 1. Basic tenets of the thermodynamic theory

  • V. L. Kolpashchikov
  • A. I. Shnip


The article starts a series of investigations of generalized linear thermodynamic systems with memory. We formulate the basic tenets of the nonequilibrium thermodynamic theory of such systems. The second law is given in the form of a postulate generalizing the classical formulation that requires that the integral of reduced heat have a fixed sign in any cyclic process. We derived some auxiliary results necessary for the main theorem to be proved.


Statistical Physic Classical Formulation Cyclic Process Auxiliary Result Thermodynamic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics [Russian translation], Moscow (1966).Google Scholar
  2. 2.
    P. Glensdorf and I. Frigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations [Russian translation], Moscow (1979).Google Scholar
  3. 3.
    R. L. Stratonovich, Nonlinear Nonequilibrium Thermodynamics [in Russian], Moscow (1985).Google Scholar
  4. 4.
    I. Diarmati, Nonequilibrium Thermodynamics. Theory of Field and Variational Principles [Russian translation], Moscow (1974).Google Scholar
  5. 5.
    L. A. Kamenyarzh and L. I. Sedov, PPM,43, Issue 1, 1–3 (1979).Google Scholar
  6. 6.
    A. A. Il'yushin and G. A. Il'yushina, Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 3, 73–80 (1983).Google Scholar
  7. 7.
    I. P. Vyrodov, Zh. Fiz. Khim.,59, Issue 10, 2385–2399 (1985).Google Scholar
  8. 8.
    I. F. Bakhareva, Nonlinear and Nonequilibrium Thermodynamics [in Russian], Saratov (1976).Google Scholar
  9. 9.
    C. Truesdell and W. Noll, in Handbuch der Physik, III/3 (1965), pp. 1–602.Google Scholar
  10. 10.
    C. Truesdell, Rational Thermodynamics, Berlin (1976).Google Scholar
  11. 11.
    C. Tuesdell, Mekh., No. 4, 99–136 (1970).Google Scholar
  12. 12.
    U. A. Day, Thermodynamics of Simple Media With Memory [Russian translation], Moscow (1974).Google Scholar
  13. 13.
    B. D. Coleman, Arch. Rat. Mech., Anal.,17, No. 1, 1–45 (1964).Google Scholar
  14. 14.
    M. E. Gurtin, Arch. Rat. Mech. Anal.,28, No. 1, 40–50 (1968).Google Scholar
  15. 15.
    B. D. Coleman and D. R. Owen, Arch. Rat. Mech. Anal.,36, No. 4, 245–269 (1970).Google Scholar
  16. 16.
    P. J. Chen and J. W. Nunziato, ZAMP,25, 791–795 (1974).Google Scholar
  17. 17.
    V. L. Kolpashchikov and A. I. Shnipp, Int. J. Eng. Sci.,16, No. 5, 503–514 (1978).Google Scholar
  18. 18.
    V. L. Kolpashchikov and A. I. Shnipp, Int. J. Eng. Sci.,21, No. 5, 543–553 (1983).Google Scholar
  19. 19.
    V. L. Kolpashchikov and A. I. Shnip, Theoretical and Applied Mechanics, 4th Nat. Congress (Varna, 1981), Papers, Vol. 1, Sofia (1981).Google Scholar
  20. 20.
    V. L. Kolpashchikov and A. I. Shnip, Thermodynamics and Models of Nonclassical Media, (Preprint No. 9 of the Heat and Mass Transfer Institute of the Academy of Sciences of BSSR), Minsk (1986).Google Scholar
  21. 21.
    M. E. Gurtin and W. O. Williams, Arch. Rat. Mech. Anal.,26, No. 2, 83–117 (1967).Google Scholar
  22. 22.
    A. E. Green and P. M. Naghdi, Arch. Rat. Mech. Anal.,48, No. 5, 352–378 (1972).Google Scholar
  23. 23.
    A. E. Green and A. Laws, Arch. Rat. Mech. Anal.,45, No. 1, 47–53 (1972).Google Scholar
  24. 24.
    I. Muller, Arch. Rat. Mech. Anal.,26, No. 2, 118–141 (1967).Google Scholar
  25. 25.
    I. Muller, Pure Appl. Chem.,20, Nos. 3–4, 335–342 (1970).Google Scholar
  26. 26.
    J. Meixner, Arch. Rat. Mech. Anal.,33, No. 1, 33–53 (1969).Google Scholar
  27. 27.
    B. D. Coleman and D. R. Owen, Arch. Rat. Mech. Anal.,54, No. 1, 1–102 (1974).Google Scholar
  28. 28.
    V. L. Kolpashchikov and A. I. Shnip, Inzh.-Fiz. Zh.,65, No. 2, 192–197 (1993).Google Scholar
  29. 29.
    B. D. Coleman and D. R. Owen, Arch. Rat. Mech. Anal.,58, No. 1, 26–51 (1975).Google Scholar
  30. 30.
    J. Willems, J. of Franklin Inst.,301, No. 6, 605–621 (1978).Google Scholar
  31. 31.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and of Functional Analysis [in Russian], Moscow (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. L. Kolpashchikov
  • A. I. Shnip

There are no affiliations available

Personalised recommendations