Skip to main content
Log in

N- and S-modes of self-similar compression of a finite mass of plasma and properties of the modes with peaking

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. N. G. Basov and 0. N. Krokhin, “Conditions of plasma heating by laser radiation,” Zh. Ésp. Teor. Fiz.,46, No. 1, 171 (1964).

    Google Scholar 

  2. I. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities. Eighth International Quantum Electronics Conference, Montreal, May, 1972,” Nature,239. No. 5368, 139 (1972).

    Google Scholar 

  3. J. S. Clarke, H. N. Fisher, and R. J. Mason, “Laser-driven implosion of spherical DT targets to thermonuclear burn conditions,” Phys. Rev. Lett.,30, No. 3, 89 (1973).

    Google Scholar 

  4. S. I. Anisimov, “On the transition of hydrogen into a metallic state in a. compression wave initiated by a laser pulse,” Zh. Éksp. Teor. Fiz., Pis'ma Red.,16, No. 10, 570 (1972).

    Google Scholar 

  5. R. E. Kidder, “Interaction of intense photon beams with plasmas,” Nuclear Fusion,14, No. 1, 53 (1974).

    Google Scholar 

  6. K. P. Stanyukovich, Transient Motions of a Continuous Medium [in Russian], Cos. Izd. Tekh. Teor. Lit., Moscow (1955).

    Google Scholar 

  7. N. V. Zmitrenko and S. P. Kurdyumov, “Self-similar mode of compression of a finite mass of plasma,” Dokl. Akad. Nauk SSSR,218, No. 6, 1306 (1974).

    Google Scholar 

  8. N. V. Zmitrenko and S. P. Kurdyumov, “Self-similar modes of compression of a plasma by a piston. Report to the Fourth All-Union Conference on Heat and Mass Exchange,” in: Heat and Mass Transfer [in Russian], Vol. 8, Inst. Teplo i Massoobmena Akad. Nauk BelorusSSR, Minsk (1972).

    Google Scholar 

  9. N. V. Zmitrenko and S. P. Kurdyumov, “Self-similar mode of compression of a finite mass of plasma in the Z- and Θ-pinch problems,” Preprint Inst. Prikl. Mekh., Moscow, No. 19 (1974), Deposited in VINITI, No. 3398-75.

  10. A. A. Samarskii, “A computational experiment in plasma physics,” in: Review of Reports to the Second International Conference on Plasma Theory [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  11. S. P. Kurdyumov, “Nonlinear processes in a dense plasma,” Preprint Inst. Prikl. Mekh., Moscow, No. 18 (1975).

    Google Scholar 

  12. A. A. Samarskii, “A computational experiment in laser thermonuclear synthesis (LTS),” in: Reports to the Eighth International Conference on Laser Controlled Thermonuclear Synthesis, Poland, May, 1975.

  13. S. P. Kurdyumov, “Nonlinear processes in a dense plasma,” in: Reports to the Eighth International Conference on Laser Controlled Thermonuclear Synthesis, Poland, May, 1975.

  14. A. A. Samarskii and I. M. Sobol', “Examples of the numerical calculation of temperature waves,” Zh. Vychisl. Mat. Mat. Fiz.,3, No. 4, 702 (1963).

    Google Scholar 

  15. B. B. Kadomtsev, “Hydromagnetic stability of a plasma,” in: Problems of Plasma Theory [in Russian], Part 2, Atomizdat, Moscow (1963).

    Google Scholar 

  16. Yu. V. Sanochkin, “Dissipative instability in magnetohydrodynamics,” Magnitn. Gidrodinam.,3, 61 (1965).

    Google Scholar 

  17. V. F. D'yachenko and V. S. Imshennik, “On the magnetohydrodynamic theory of the pinch effect in a high-temperature dense plasma,” in: Problems of Plasma Theory [in Russian], Part 5, Atomizdat, Moscow (1967), p. 394.

    Google Scholar 

  18. S. G. Alikhanov and I. K. Konkashbaev, “Equilibrium distributions of temperature and pressure in a steady discharge with emission,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 133 (1971).

    Google Scholar 

  19. K. A. Brueckner, “Laser driven fusion,” Preprint KMSF-U97, Michigan (1973).

  20. P. P. Volosevich and V. S. Sokolov, “The self-similar problem of the dispersion of an electrically conducting gas into a medium with a given axial magnetic field,” Magnitn. Gidrodinam.,1, 43 (1967).

    Google Scholar 

  21. A. N. Tikhonov, A. A. Samarskii, L. A. Zaklyazminskii, et al., “The nonlinear effect of the formation of a self-maintaining, high-temperature, electrically conducting gas layer in nonsteady processes of magnetohydrodynamics,” Dokl. Akad. Nauk SSSR,173, No. 4, 808 (1967).

    Google Scholar 

  22. A. N. Tikhonov, A. A. Samarskii, L. A. Zaklyazminskii, et al., “The current-layer effect in magnetohydrodynamics,” Preprint Inst. Prikl. Mekh., Moscow (1969).

    Google Scholar 

  23. L. M. Degtyarev, L. A. Zaklyazminskii, S. P. Kurdyumov, et al., “Development of finite localized disturbances of electrical conduction in a stream of weakly conducting gas in the presence of a magnetic field,” Teplofiz. Vys. Temp.,7, No. 3, 471 (1969).

    Google Scholar 

  24. P. P. Volosevich, S. P. Kurdyumov, Yu. P. Popov, and A. A. Samarskii, “Self-similar problem of a high-current discharge in a plasma,” Zh. Vychisl. Mat. Mat. Fiz.,10, No. 6, 1447 (1970).

    Google Scholar 

  25. P. P. Volosevich, V. Ya. Gol'din, N. N. Kalitkin, et al., “Some stages of a high-current discharge in a plasma,” Preprint Inst. Prikl. Mekh., Moscow, No. 40 (1971).

    Google Scholar 

  26. S. P. Kurdyumov, Yu. P. Popov, and A. A. Samarskii, “Nonlinear effects of the formation of structures in radiative magnetohydrodynamics,” in: Heat and Mass Transfer [in Russian], Vol. 8, Inst. Teplo- i Massoobmena Akad. Nauk BelorusSSR, Minsk (1972),

    Google Scholar 

  27. S. P. Kurdyumov, “A numerical experiment in radiative magnetohydrodynamics,” Preprint Inst. Prikl. Mekh., Moscow, No. 26 (1972).

    Google Scholar 

  28. A. A. Samarskii, S. P. Kurdyumov, Yu. N. Kulikov, et al., “A magnetohydrodynamic. model of the nonsteady acceleration of a plasma,” Dokl. Akad. Nauk SSSR,206, No. 2, 307 (1972).

    Google Scholar 

  29. Yu. A. Kerkis, V. S. Sokolov, N. A. Trynkina, and V. L. Fomichev, “Some results of an experimental study of the current-layer effect,” Dokl. Akad. Nauk SSSR,211, No. 1, 69 (1973).

    Google Scholar 

  30. A. K. Zakharov, V. V. Klavdiev, V. D. Pis'mennyi, L. Rotkhart, V. B. Saenko, A. N. Starostin, and T. Yang, “Experimental observation of current layers in a moving plasma interacting with a magnetic field,” Dokl. Akad. Nauk SSSR,212 No. 5, 1092 (1973).

    Google Scholar 

  31. V. S. Sokolov, “Superheating instability of a stream of electrically conducting gas in a transverse magnetic field with Rem ≫ 1 and a possible explanation of the nature of chromospheric flares on the sun,” Izv. Sibirsk. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 13, Part 3, 86 (1973).

    Google Scholar 

  32. A. A. Samarskii, V. A. Dorodnitsyn, S. P. Kurdyumov, and Yu. P. Popov, “Formation of current layers in the process of retardation of a plasma by a magnetic field,” Dokl. Akad. Nauk SSSR, 216, No. 6, 1254 (1974).

    Google Scholar 

  33. L. N. Busurina, P. P. Volosevich, D. G. Gordeziani, et al., “The formation and role of the current layer in the process of MHD conversion of energy in the interaction of a lithium plasma with a magnetic field,” Preprint Inst. Prikl. Mekh., Moscow, No. 31 (1974).

    Google Scholar 

  34. S. K. Zhdanov and B. A. Trubnikov, “Optimal compression of plasma in Z- and Θ-pinches,” Zh. Éksp. Teor. Fiz., Pis'ma Red.,21, No. 6, 371 (1975).

    Google Scholar 

  35. I. V. Nemchinov, “On the motion of a plane layer of heated gas and its asymptotic behavior,” in: Mechanics of a Continuous Medium and Related Problems of Analysis [in Russian], Nauka, Moscow (1972), pp. 337–369.

    Google Scholar 

  36. V. E. Neuvazhaev, “Discharge of gas into a vacuum with a power law of the temperature at the boundary,” Prikl. Mat. Mekh.,30, 1015 (1966).

    Google Scholar 

  37. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Academic Press (1959).

  38. G. Guderley, “Starke Kugelige und zylindrische Verdichtungsstosse in der Nähe des Kugelmittelpunktes bzw. der Zylinderasche,” Luftfahrtforschung,19, No. 9, 302 (1942).

    Google Scholar 

  39. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 2nd ed., Academic Press (1966–1967).

  40. A. A. Samarskii, N. V. Zmitrenko, S. P. Kurdyumov, and A. P. Mikhailov, “Effect of metastable localization of heat in a medium with nonlinear heat conduction,” Dokl, Akad. Nauk SSSR,223, No. 6, 1344 (1975).

    Google Scholar 

  41. S. P. Kurdyumov, “Localization of heat in a nonlinear medium,” Preprint Inst. Prikl. Mekh., Moscow, No. 39 (1976).

  42. Ya. B. Zel'dovich and A. S. Kompaneets, “On the theory of heat propagation with a temperature-dependent thermal conductivity,” in: On the 70th Birthday of A. F. Ioffe [in Russian], Izd. Akad. Nauk SSSR, Moscow (1950), p. 61.

    Google Scholar 

  43. G. I. Barenblatt and I. M. Vishik, “On the finite propagation velocity in problems of the nonsteady filtration of liquid and gas,” Prikl. Mat. Mekh.,20, No. 3, 411 (1956).

    Google Scholar 

  44. R. Marshak, “An influence of the radiation on the behavior of the shock waves,” Phys. Fluids, No. 1, 24 (1958).

    Google Scholar 

  45. P. P. Volosevich, S. P. Kurdyumov, L. N. Busurina, and V. P. Krus, “Solution of the onedimensional plane problem of the motion of a piston in an ideal heat-conducting gas,” Zh. Vychisl. Mat. Mat. Fiz.,3, No. 1, 159 (1963).

    Google Scholar 

  46. A. A. Samarskii, S. P. Kurdyumov, and P. P. Volosevich, “Traveling waves in a medium with nonlinear heat conduction,” Zh. Vychisl. Mat. Mat. Fiz.,5, No. 2, 199 (1965).

    Google Scholar 

  47. S. P. Kurdyumov, “Traveling waves in a medium with nonlinear heat conduction,” Preprint Inst. Prikl. Mekh., Moscow, Nos. 45, 55, 56 (1971), Deposited in VINITI, Nos. 337-74. 339-74, 338-74.

    Google Scholar 

  48. P. P. Volosevich, S. P. Kurdyumov, and E. I. Levanov, “Different modes of thermal heating during the interaction of powerful radiation fluxes with matter,” Zh. Prikl. Mekh Tekh. Fiz., No. 5, 41 (1972).

    Google Scholar 

  49. A. A. Samarskii, N. V. Zmitrenko, S. P. Kurdyumov, and A. P. Mikhailov, “Thermal structures and the fundamental length in a medium with nonlinear heat conduction and volumetric heat sources,” Dokl. Akad. Nauk SSSR,227, No. 2, 321 (1976).

    Google Scholar 

  50. L. K. Martinson and K. B. Pavlov, “Spatial localization of thermal disturbances in problems of nonlinear heat conduction with absorption,” Zh. Vychisl. Mat. Mat. Fiz., 12, No. 4, 1048 (1972).

    Google Scholar 

  51. A. S. Kalashnikov, “On the nature of the propagation of disturbances in problems with absorption,” Zh. Vychisl. Mat. Mat. Fiz.,14, No. 4, 891 (1974).

    Google Scholar 

  52. V. Ya. Gol'din and B. N. Chetverushkin, “Numerical modeling of problems of radiative gasdynamics,” Preprint Inst. Prikl. Mekh., Moscow, No. 17 (1973).

  53. V. A. Dorodnitsyn and Yu. P. Popov, “On steady modes of a radiating, high-current, self-constricting discharge,” Zh. Vychisl. Mat. Mat. Fiz.,13, No. 1, 247 (1973).

    Google Scholar 

  54. I. F. Kvartskhava, Yu. V. Matveev, I. Ya. Butov, A. A. Samarskii, S. P. Kurdyumov, and Yu. P. Popov, “The role of self-organization of pinch discharges in the heating and confinement of a plasma,” Nuclear Fusion, Suppl., 175 (1975).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 3–23, January–February, 1977.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zmitrenko, N.V., Kurdyumov, S.P. N- and S-modes of self-similar compression of a finite mass of plasma and properties of the modes with peaking. J Appl Mech Tech Phys 18, 1–18 (1977). https://doi.org/10.1007/BF00858599

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00858599

Keywords

Navigation