Skip to main content
Log in

Local structure of a binary finely dispersed fluidized bed

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Results are given of calculations of the quantities characterizing the random pseudoturbulent motions of the phases in a homogeneous fluidized bed consisting of particles of two sorts, differing in size. The dependence of the coefficients of pseudoturbulent diffusion of the particles, the mean-square velocities of the pulsations, etc., on the partial concentrations of the particles, the ratio of their sizes, and other parameters is evaluated. For granular beds, fluidized by a gas or a drop-type liquid, intense chaotic fluctuations of both phases are characteristic; these determine to a considerable degree the observed macroscopic properties of the bed and affect its effectiveness as a working body in various types of heat exchangers and chemical reactors. Such random (“pseudoturbulent”) motions are particularly considerable for beds of small particles under homogeneous fluidization conditions, where mixing due to the rise of cavities in the bed, filled only with the fluidizing medium, is practically absent. A similar situation is encountered in reactor and regenerating units for catalytic cracking [1, 2], in beds with a drop-type liquid phase, in rarefied two-phase systems under the conditions of strong fluidization or of the transport of bulk materials in a dilute phase, etc. The characteristics of pseudoturbulence in locally homogeneous flows of monodisperse two-phase systems have been investigated, for example, in [3–5]. However, real fluidized beds are generally polydis-perse; the presence of particles of different sizes in the bed has a very considerable effect, on the intensity of the pulsations, the effective diffusion coefficients of the phases of the bed, the effective viscosities, etc. [1, 6]. In addition, the chaotic mixing in polydisperse beds determines some of the technological characteristics, specifically, the rate of entrainment of small particles by the flow of the fluidizing medium and the settling of large particles, the degree of separation of the fractions of the disperse phase, which is very important in determination of the limits of the existence of the fluidized state, and in the modeling of numerous processes of the separation of particles with respect to size or density [1, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. N. I. Gel'perin, V. G. Ainshtein, and V. B. Kvasha, Principles of the Technology of Fluidization [in Russian], Izd. Khimiya, Moscow (1967).

    Google Scholar 

  2. B. I. Bondarenko, Catalytic Cracking Units [in Russian], Izd. Gostoptekhizdat, Moscow (1958).

    Google Scholar 

  3. Yu. A. Buevich, “Local pulsations and interaction between phases in suspensions of small particles,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1971).

  4. Yu. A. Buevich and O. N. Chubanov, “Diffusion of particles in a homogeneous fluidized bed,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1972).

  5. Yu. A. Buevich (Buyevich), “Statistical hydromechanics of disperse systems. Part 3. Pseudoturbulent structure of homogeneous suspensions,” J. Fluid. Mech.,56, Part 2, 313 (1972).

    Google Scholar 

  6. S. S. Zabrodskii, Hydrodynamics and Heat Transfer in a Fluidized (Boiling) Bed [in Russian], Izd. Gosénergoizdat, Moscow (1963).

    Google Scholar 

  7. C. K. W. Tam, “The drag on a cloud of spherical particles in low Reynolds number flow,” J. Fluid Mech.,38, Part 3, 537 (1969).

    Google Scholar 

  8. V. P. Myasnikov, “The dynamic equations of the motion of two-component systems,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1967).

  9. M. A. Gol'dshtik, “The elementary theory of a fluidized bed,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1972).

  10. M. A. Gol'dshtik and B. N. Kozlov, “Elementary theory of concentrated disperse systems,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1973).

  11. Yu. A. Buevich, “The spectral theory of concentrated disperse systems,” No. 6 (1970).

  12. H. Trawinski, “Effective Zähigkeit und Inhomogenitat von Wirbelschichten,” Chem. Ing. Techn.,25, No. 5, 229 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 118–126. March–April, 1976.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buevich, Y.A., Liventsov, V.M. & Mozol'kov, A.E. Local structure of a binary finely dispersed fluidized bed. J Appl Mech Tech Phys 17, 239–245 (1976). https://doi.org/10.1007/BF00858417

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00858417

Keywords

Navigation