Advertisement

Shock compression of porous materials

  • Yu. A. Krysanov
  • S. A. Novikov
Article
  • 49 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Porous Material Shock Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. I. Bodrenko, Yu. A. Krysanov, and S. A. Novikov, “Study of shock wave propagation in porous material,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1979).Google Scholar
  2. 2.
    R. R. Boade, “Compression of Porous copper by shock,” J. Appl. phys.,39, No. 12 (1968).Google Scholar
  3. 3.
    R. K. Linde, L. Seaman, and D. T. Schmidt, “Shock response of porous copper, iron, tungsten, and polyurethane,” J. Appl. Phys.,43, No. 8 (1972).Google Scholar
  4. 4.
    B. Paul, “Prediction of elastic constants of multiphase materials,” Trans. Met. Soc. AIME,218, No. 2 (1960).Google Scholar
  5. 5.
    Z. Hashin, “The electic moduli of heterogeneous materials,” J. Appl. Phys.,33, No. 2 (1962).Google Scholar
  6. 6.
    J. E. Mackenzie, “The elastic constants of solid containing spherical hobs,” Proc. Phys. Soc. London B,63, No. 2 (1950).Google Scholar
  7. 7.
    E. H. Kerner, “The elastic and thermo-elastic properties of composite media,” Proc. Phys. Soc. London B,69, No. 8 (1956).Google Scholar
  8. 8.
    R. M. Christensen, Mechanics of Composits Matarials, Wiley-Intersciancs (1979).Google Scholar
  9. 9.
    B. Budiansky, “On the elastic moduli of some heterogeneous materials.” J. Mech. Phys. Soc.,13, No. 4 (1965).Google Scholar
  10. 10.
    M. Yu. Val'shin, “Dependence of mechnical properties of powdered metals on porosity and failure properties of metailoceranic compounds,” Dokl. Akad. Nauk SSSR,57, No. 5 (1949).Google Scholar
  11. 12.
    P. S. Khuane, “Loss of strength in coarse porous bodies,” Plast. Mass., No. 1 (1965).Google Scholar
  12. 13.
    M. Kats, “Modulus of elasticity of materials with a cellular-porous structure,” Probl. Prochn., No. 3 (1972).Google Scholar
  13. 14.
    V. Herrman, “Equations of state for porous materials under compression,” in: Problems in Structural Strength Theory, 7th Ed. [Russian translation], Mir, Moscow (1976).Google Scholar
  14. 15.
    J. R. Asay, “Shock and release behavior in porous 1100 aluminum,” J. Appl. Phys.,46, No. 11 (1975).Google Scholar
  15. 16.
    R. R. Boade, “Dynamic compression of porous tungsten,” J. Appl. Phys.,40, No. 9 (1969).Google Scholar
  16. 17.
    D. R. Dundekar and R. M. Lamothe, “Behavior of porous tungsten under shock compression at room temperature,” J. Appl. Phys.,48, No. 7 (1977).Google Scholar
  17. 18.
    A. Buch and S. Goldschmidt, “Influence of porosity on elastic moduli of sintered materials,” Mater. Sci. Engng.,4, No. 5 (1969/70).Google Scholar
  18. 19.
    G. Eden and C. R. Smith, “Elastic-plastic behavior of porous beryllium,” in: Proc. 5th International Symposium on Detonation, Pasadena, California, 1970, Arlington (1970).Google Scholar
  19. 20.
    R. N. Schock, A. E. Aleg, and A. Duba, “Quasistatic deformation of porous beryllium and aluminum,” J. Appl. Phys.,47, No. 1 (1976).Google Scholar
  20. 21.
    S. P. Marsh (ed.), LASL Shock Hugoniot data, Univ. California Press, Berkeley-Los Angeles-London (1980).Google Scholar
  21. 22.
    B. M. Butcher, M. M. Carroll, and A. C. Holt, “Shock wave compaction of porous aluminum,” J. Appl. Phys.,45, No. 9 (1974).Google Scholar
  22. 23.
    B. M. Butcher, “Dynamic response of partially compacted porous aluminum during unloading,” J. Appl. Phys.,44, No. 10 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Yu. A. Krysanov
    • 1
  • S. A. Novikov
    • 1
  1. 1.Moscow

Personalised recommendations