Analysis of strong radiating shockwaves converging to a center of symmetry

  • A. I. Marchenko
  • V. V. Urban


Mathematical Modeling Shockwaves Mechanical Engineer Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. Guderley, “Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw. der Zylinderachse,” Luftfahrtforschung,19, No. 9 (1942).Google Scholar
  2. 2.
    K. P. Stanyukovich, Unsteady Motion of a Continuous Medium [in Russian], Nauka, Moscow (1971).Google Scholar
  3. 3.
    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shocks and High-Temperature Hydrodynamic Phenomena [in Russian], Fizmatgiz (1963).Google Scholar
  4. 4.
    I. I. Kudish and V. A. Rykov, “On the convergence to a center and reflection of a spherical wave in a gas,” Zh. Vychisl. Mat. Mat. Fiz.,16, No. 5, (1976).Google Scholar
  5. 5.
    E. I. Zababakhin and V. A. Simonenko, “Convergent shock in a heat conducting gas,” Prikl. Mat. Mekh.,29, No. 2 (1965).Google Scholar
  6. 6.
    A. A. Makhmudov, “Shock convergence to a center of symmetry and its reflection in a heat-conducting gas,” Uchen Zap. TsAGI,11, No. 4 (1980).Google Scholar
  7. 7.
    V. F. D'yachenko and V. S. Imshennik, “Convergent cylindrical shock in a plasma with structure of the front taken into account,” Zh. Vychisl. Mat. Mat. Fiz.,3, No. 5 (1963).Google Scholar
  8. 8.
    V. F. D'yachenko and V. S. Imshennik, “On a convergent cylindrically symmetric shock in the presence of dissipative effects,” Prikl. Mat. Mekh.,29, No. 6 (1965).Google Scholar
  9. 9.
    E. A. Berchenko and V. P. Korobeinikov, “Numerical investigation of convergent shocks,” Dokl. Akad. Nauk SSSR,230, No. 6 (1976).Google Scholar
  10. 10.
    V. S. Imshennik, “Cumulative convergent shocks with dissipative processes taken into account,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1980).Google Scholar
  11. 11.
    N. A. Bardin, “Shock focusing in a three-temperature plasma,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1984).Google Scholar
  12. 12.
    V. S. Imshennik, “Shock structure in a dense high-temperature plasma,” Fiz. Plasmy,1, No. 2 (1975).Google Scholar
  13. 13.
    R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, 2nd Ed., Wiley-Interscience (1967).Google Scholar
  14. 14.
    M. A. El'yashevich, G. S. Romanov, and Yu. A. Stankevich, “Computation of parameters of light-erosive plasma torches with spectral dependences of their radiative characteristics taken into account,” Proc. 4th All-Union Conf., “Radiating Gas Dynamics” [in Russian], Vol. 1, Moscow State Univ. (1981).Google Scholar
  15. 15.
    N. V. Nemchinov, “On averaged radiation transport equations and their utilization in the solution of gasdynamic problems,” Prikl. Mat. Mekh.,34, No. 4 (1970).Google Scholar
  16. 16.
    B. N. Bazylev and G. S. Romanov, “Numerical solution of the spectral radiation-gasdynamic problem of radiant cooling of a spherical plasma volume with nonstationarity of the radiation transport process taken into account,” Inzh.-Fiz. Zh.,31, No. 2 (1981).Google Scholar
  17. 17.
    A. D. Rekin, “Radiation transport equations in the Shuster-Schwartzchild approximation for problems with spherical and cylindrical symmetry,” Teplofiz. Vys. Temp.,16, No. 4 (1978).Google Scholar
  18. 18.
    A. P. Golub', T. B. Malyavina, and I. V. Nemchinov, “On averaging of the radiation transport equations for the solution of two-dimensional radiation-gasdynamic problems,” Inzh.-Fiz. Zh.,45, No. 4 (1983).Google Scholar
  19. 19.
    G. S. Romanov, B. N. Bazylev, and K. L. Stepanov, “Radiant cooling of a spherical cloud of fully ionized gas dissipating in a vacuum,” Dokl. Akad. Nauk BSSR,22, No. 2 (1978).Google Scholar
  20. 20.
    A. A. Samarskii and Yu. P. Popov, Difference Methods of Solving Gas Dynamics Problems [in Russian], Nauka, Moscow (1980).Google Scholar
  21. 21.
    I. V. Nemchinov, I. A. Trubetskaya, and V. V. Shuvalov, “Intensively radiating supercritical shocks,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1986).Google Scholar
  22. 22.
    A. M. Zhmakin and A. A. Fursenko, “On a monotonic difference scheme of through computation,” Zh. Vychisl. Mat. Mat. Fiz.,20, No. 4 (1980).Google Scholar
  23. 23.
    I. V. Nemchinov and V. V. Shuvalov, “On radiation of convergent shocks,” Zh. Tekh. Fiz.,55, No. 10 (1985).Google Scholar
  24. 24.
    V. F. D'yachenko and V. S. Imshennik, “On a magnetohydrodynamic theory of the pinch-effect in a high-temperature dense plasma,” Voprosy Teorii Plazmy [in Russian], No. 5, Atomizdat, Moscow (1967).Google Scholar
  25. 25.
    L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. I. Marchenko
    • 1
  • V. V. Urban
    • 1
  1. 1.Minsk

Personalised recommendations