Polymer Mechanics

, Volume 12, Issue 3, pp 482–484 | Cite as

Statistical interpretation of the temperature and stress shift factors

  • G. M. Kerch
  • L. A. Irgen
Brief Communications


Expressions for the temperature and stress shift factors are derived on the basis of a statistical-probability treatment of the segmental motion of the macromolecules using the theory of energy level transitions. It is shown that in the general case the temperature shift factor should depend on stress, and the stress shift factor on temperature.


Energy Level Macromolecule Temperature Shift Segmental Motion Level Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York (1961).Google Scholar
  2. 2.
    Yu. S. Urzhumtsev, "Prediction of the deformation and fracture processes of polymeric materials," Mekh. Polim., No. 3, 498–514 (1972).Google Scholar
  3. 3.
    Yu. S. Urzhumtsev, "Time-temperature superposition," Mekh. Polim., No. 1, 66–83 (1975).Google Scholar
  4. 4.
    Yu. S. Urzhumtsev and R. D. Maksimov, "Stress-time superposition in nonlinear viscoelasticity," Mekh. Polim., No. 2, 379–381 (1968).Google Scholar
  5. 5.
    H. Brody, "Stress-time superposition as an aid to creep evaluation," Plastics and Polymers,87, No. 127, 21–25 (1969).Google Scholar
  6. 6.
    D. L. Martin, Jr., "Effect of filler concentration on the viscoelastic response of a filled polymer system," Proc. US Army Conf. West Point, 1, 211–226 (1965).Google Scholar
  7. 7.
    V.-P. Pekarskas and V. L. Rayatskas, "Use of concentration-temperature superposition for predicting the strength of polymer glued joints," Mekh. Polim., No. 1, 168–170 (1974).Google Scholar
  8. 8.
    A. J. Kovacs, "Applicability of the free volume concept to the relaxation phenomena in the glass transition," Rheol. Acta,5, No. 4, 262–269 (1966).Google Scholar
  9. 9.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Rigid Polymeric Materials [in Russian], 2nd ed., Riga (1972).Google Scholar
  10. 10.
    A. K. Malmeister, "Statistical interpretation of rheological equations," Mekh. Polim., No. 2, 197–213 (1966).Google Scholar
  11. 11.
    Yu. S. Urzhumtsev, "Variant of the statistical interpretation of the formation of viscoelastic strains in polymers," Mekh. Polim., No. 3, 392–396 (1973).Google Scholar
  12. 12.
    S. B. Ainbinder, K. I. Alksne, M. G. Laka, and E. L. Tyunina, Properties of Polymers at High Pressures [in Russian], Moscow (1973).Google Scholar
  13. 13.
    I. M. Ward, Mechanical Properties of Solid Polymers, Wiley-Interscience (1971).Google Scholar
  14. 14.
    G. M. Bartenev, "Relation between the viscoelasticity and fracture processes of noncrystalline polymers," in: Relaxation Phenomena in Polymers [in Russian], Leningrad (1972), pp. 76–78.Google Scholar
  15. 15.
    Ch. L. Daugste, "Combined use of time-temperature and stress-time superposition for constructing generalized curves," Mekh. Polim., No. 3, 427–431 (1974).Google Scholar
  16. 16.
    V. V. Kovriga, I. G. Kuznetsova, M. L. Lebedinskaya, and E. G. Lur'e, "Methods of predicting the deformation properties of plastics," Plast. Massy, No. 4, 60–63 (1973).Google Scholar
  17. 17.
    Yu. M. Molchanov and G. A. Andrikson, "Thermodynamic determination of the shift factor. 1. Temperature shift factor," Mekh. Polim., No. 6, 1001–1010 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • G. M. Kerch
  • L. A. Irgen

There are no affiliations available

Personalised recommendations