Advertisement

Leg regeneration in the cockroach,Blattella germanica

I. Regeneration from a congruent tibial graft/host junction
  • Vernon French
Article

Summary

The interactions occuring between graft and host leg epidermis at a congruent junction (non-rotated, homopleural combination of components cut perpendicular to the proximal-distal axis) were studied at the tibia level in the cockroach,Blattella germanica. Grafts were made between dark (Bl) and light (br) cuticle colour mutants.
  1. 1)

    Precise boundaries could not usually be drawn between Bl and br tissue over areas of bare cuticle but spines, hairs and claws could be identified, providing a good indication of the graft or host origin of regenerated structures.

     
  2. 2)

    When the graft tarsus remained intact, segmented structures were not regenerated from the junction. Host distal tibia and graft proximal tibia interacted to produce a reversed orientation intercalary regenerate, usually composed mainly of host cells which had become more proximal than their level of origin.

     
  3. 3)

    When the graft tarsus was amputated (or broken off), nearly 50% of congruent junctions regenerated segmented distal structures, which were classified as “autonomous” or “lateral”. Amputation of the graft tarsus acted, not through removal of any inhibition, but by hindering healing of the junction because of the apolysis of graft tibial epidermis.

     
  4. 4)

    Distal structures regenerated autonomously by host and graft components of the junction were either complete or partial (fused at a common level in the tarsus).

     
  5. 5)

    Lateral regenerates were of joint origin and usually distally incomplete. They were stable and, when amputated, were regenerated to approximately the same level, in the presence or absence of the graft tarsus.

     
  6. 6)

    It is concluded that autonomous regeneration occurred from junctions which had totally failed to heal, and that lateral regeneration occurred from an unhealed sector of a junction. Laterals were therefore regenerated from a bilaterally symmetrical, partial circumference. They are compared to other incomplete regenerates found in analogous situations. The relationship between transverse organization and distal incompleteness is obscure.

     
  7. 7)

    Segmented structures are thus regenerated only in situations where host and graft do not heal and interact (at least initially) over all or part of the circumference of the junction: interaction results in the formation of an unsegmented intercalary regenerate comprising the levels normally lying between host and graft on the proximal-distal axis.

     

Keywords

Proximal Tibia Distal Tibia Host Origin Segmented Structure Colour Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bart, A.: Conditions locales du déclenchement et du développement de la régénération d'une patte chez l'InsecteCarausius morosus Br. C. R. Acad. Sci. (Paris)269, 473–476 (1969)Google Scholar
  2. Bart, A.: Blessures et transformations trochantériennes chezCarausius morosus Br. Ann. Embr. Morph.3, 379–398 (1970)Google Scholar
  3. Bart, A.: Morphogenèse surnuméraire au niveau de la platte du PhasmeCarausius morosus Br. Wilhelm Roux' Archiv166, 331–364 (1971a)Google Scholar
  4. Bart, A.: Modalités de formation et de développement d'un centre morphogénetique surnuméraire chezCarausius morosus Br. Wilhelm Roux' Archiv168, 97–124 (1971b)Google Scholar
  5. Bart, A.: Morphogenèse provoquée par une discontinuité proximodistale au niveau de la patte deCarausius morosus Br. I. Associations de niveaux différenciés. Arch. Biol. (Liège)83, 129–166 (1972)Google Scholar
  6. Bohn, H.: Analyse der Regenerationsfähigkeit der Insektextremität durch Amputations-und Transplantationsversuche an Larven der afrikanischen SchabeLeucophaea maderae Fabr. (Blattaria). II. Mitt. Regenerationspotenzen. Arch. Entwickl.-Mech. Org.156, 49–74 (1965a)Google Scholar
  7. Bohn, H.: Analyse der Regenerationsfähigkeit der Insektenextremität durch Amputations-und Transplantationsversuche an Larven der afrikanischen SchabeLeucophaea maderae Fabr. (Blattaria). II. Mitt. Achsendetermination. Arch. Entwickl.-Mech. Org.156, 449–503 (1965b)Google Scholar
  8. Bohn, H.: Transplantationsexperimente mit interkalarer Regeneration zum Nachweis eines sich segmental wiederholenden Gradienten im Bein vonLeucophaea (Blattaria). Verh. dtsch. zool. Ges. Göttingen (1966), Suppl.30, 499–508 (1967)Google Scholar
  9. Bohn, H.: Interkalare Regeneration und segmentale Gradienten bei den Extremitäten vonLeucophaea-Larven (Blattaria). I. Femur und Tibia. Wilhelm Roux' Archiv165, 303–341 (1970a)Google Scholar
  10. Bohn, H.: Interkalare Regeneration und segmentale Gradienten bei den Extremitäten vonLeucophaea-Larven (Blattaria). II. Coxa und Tarsus. Develop. Biol.23, 355–379 (1970b)PubMedGoogle Scholar
  11. Bohn, H.: Interkalare Regeneration und segmentale Gradienten bei den Extremitäten vonLeucophaea-Larven (Blattaria). III. Die Herkunft des interkalaren Regenerates. Wilhelm Roux' Archiv167, 209–221 (1971)Google Scholar
  12. Bohn, H.: The origin of the epidermis in the supernumerary regenerates of triple legs in cockroaches (Blattaria). J. Embryol. exp. Morph.28, 185–208 (1972a)PubMedGoogle Scholar
  13. Bohn, H.: The determination of the symmetry properties in the larval legs of cockroaches (Blattaria). Wilhelm Roux' Archiv170, 354–358 (1972b)Google Scholar
  14. Bryant, P.: Determination and pattern formation in the imaginal discs ofDrosophila. Curr. Top. Develop. Biol.8, 41–80 (1974)Google Scholar
  15. Bullière, D.: Étude de la régénération chez un Insecte Blattopteroide,Blabera craniifer Burm. (Dictyoptère). II. Influence du moment de l'amputation dans l'intermue sur la régénération de la patte metathoracique. Bull. Soc. zool. Fr.93, 69–82 (1968)Google Scholar
  16. Bulliòre, D.: Sur la déterminisme de la qualité régionale des régénérats d'appendices chez la Blatte,Blabera craniifer. J. Embryol. exp. Morph.23, 323–335 (1970a)PubMedGoogle Scholar
  17. Bullière, D.: Interprétation des régénérats multiples chez les Insectes. J. Embryol. exp. Morph.23, 337–357 (1970b)PubMedGoogle Scholar
  18. Bullière, D.: Les méchanismes de la détermination cellulaire au cours de la morphogenèse, étudiés par des expériences de régénération chez un Insecte Dictyoptère. Thèse de Doctorat (État). Université de Grenoble (1971 a)Google Scholar
  19. Bullière, D.: Utilisation de la régénération intercalaire pour l'étude de la détermination cellulaire au cours de la morphogenèse chezBlabera craniifer (Insecte Dictyoptère). Develop. Biol.25, 672–709 (1971b)PubMedGoogle Scholar
  20. Bullière, D.: Étude de la régénération d'appendice chez un Insecte: stades de la formation des régénérats et rapports avec le cycle de mue. Ann. Embr. Morph.5, 61–74 (1972)Google Scholar
  21. Bullière, D., Bullière, F., Sengel, P.: Régénération du tarse chez l'embryon deBlabera craniifer (Insecte Dictyoptere) en culture in vitro. C. R. Acad. Sci. (Paris)269, 355–357 (1969)Google Scholar
  22. Chandebois, R.: General mechanisms of regeneration as elucidated by experiments on planarians and by a new formulation of the morphogenetic field concept. Acta biotheor. (Leiden)22, 2–33 (1973)Google Scholar
  23. Cooke, J.: The emergence and regulation of spatial organisation in early animal development. Ann. Rev. Biophys. Bioeng.4, 185–217 (1975)Google Scholar
  24. French, V.: Pattern formation in cockroach leg regeneration. D. Phil. Thesis, University of Sussex (1974)Google Scholar
  25. French, V.: Leg regeneration in the cockroach,Blattella germanica. II. Regeneration from a non-congruent tibial graft/host junction (1976a, J. Embryol. exp. Morph., in the press)Google Scholar
  26. French, V.: Leg regeneration in the cockroach,Blattella germanica. III. Regeneration from a graft/host junction between different segments (1976b, in preparation)Google Scholar
  27. French, V., Bullière, D.: Nouvelles données sur la détermination de la position des cellules épidermiques sur un appendice de Blatte. C. R. Acad. Sci. (Paris)280, 53–56 (1975a)Google Scholar
  28. French, V., Bullière, D.: Étude de la détermination de la position des cellules épidermiques: ordonnancement des cellules autour d'un appendice de Blatte; démonstration du concept de génératrice. C. R. Acad. Sci. (Paris)280, 295–298 (1975b)Google Scholar
  29. Kunkel, J.: Development and the availability of food in the German cockroach,Blattella germanica. J. Insect Physiol.12, 227–235 (1966)Google Scholar
  30. Lawrence, P.: Polarity and patterns in post-embryonic development of insects. Adv. Insect Physiol.7, 197–266 (1970)Google Scholar
  31. O'Farrel, A., Stock, A.: Regeneration and the moulting cycle inBlattella germanica. I. Single regeneration during the first instar. Aust. J. biol. Sci.6, 485–500 (1953)PubMedGoogle Scholar
  32. O'Farrel, A., Stock, A.: Some aspects of regeneration in cockroaches. Proc. 10th Int. Congr. Entomol.2, 253–259 (1958)Google Scholar
  33. O'Farrel, A., Stock, A. Rae, C., Morgan, J.: Regeneration and development in the cockroach,Blattella germanica. Acta Soc. Entomol. Čechslov.57, 317–324 (1960)Google Scholar
  34. Penzlin, H.: Experimentelle Erzeugung von Dreifachbildungen bei einem heterometabolen Insekt. Naturwissenschaften52, 217 (1965)Google Scholar
  35. Rose, S.: Regeneration, New York: Appleton-Century-Crofts 1970Google Scholar
  36. Ross, M., Cochran, D.: Genetic variability in the German cockroach. II. A description of new mutants and linkage tests. J. Hered.58, 274–278 (1967)PubMedGoogle Scholar
  37. Sander, K.: Pattern formation in longitudinal halves of leaf hopper eggs (Homoptera) and some remarks on the definition of “embryonic regulation” Wilhelm Roux' Archiv167, 336–352 (1971)Google Scholar
  38. Webster, G.: Morphogenesis and pattern formation in hydroids. Biol. Rev.46, 1–46 (1971)Google Scholar
  39. Wilby, O., Webster, G.: Studies on the transmission of hypostome inhibition inHydra. J. Embryol. exp. Morph.24, 583–590 (1970)PubMedGoogle Scholar
  40. Wolpert, L.: Positional information and the pattern of cellular differentiation. J. theor. Biol.25, 1–47 (1969)PubMedGoogle Scholar
  41. Wolpert, L.: Positional information and pattern formation. Curr. Top. Develop. Biol.6, 183–224 (1971)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Vernon French
    • 1
    • 2
  1. 1.Developmental Biology GroupUniversity of SussexBrightonUK
  2. 2.Division of Developmental BiologyNational Institute for Medical ResearchLondon

Personalised recommendations