Polymer Mechanics

, Volume 7, Issue 5, pp 752–756 | Cite as

Investigation of the deformation of a rubbery network polymer (SKN-40) in various types of states of stress

  • G. M. Bartenev
  • V. P. Nikiforov
Article
  • 22 Downloads

Abstract

From the experimental data on equilibrium uniaxial and nonsymmetrical and symmetrical biaxial tension and pure and mixed shear it follows that the deformation behavior of SKN-40 crosslinked butadiene-nitrile copolymer is more accurately described by the Bartenev-Khazanovich high-elastic potential. The potential of the classical statistical theory of high elasticity of network polymers does not describe different types of states of stress with the same value of the material constant.

Keywords

Polymer Experimental Data Statistical Theory Deformation Behavior Material Constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. R. G. Treloar, Physics of Rubber Elasticity, Oxford Univ. Press (1949).Google Scholar
  2. 2.
    G. M. Bartenev and T. N. Khazanovich, Vys. Molek. Soed.,2, 20 (1960).Google Scholar
  3. 3.
    G. M. Bartenev, Zh. Tekhn. Fiz.,20, 461 (1950);22, 1154 (1952).Google Scholar
  4. 4.
    G. Gee, Trans. Farad. Soc.,42, 585 (1946).Google Scholar
  5. 5.
    G. M. Bartenev, Kolloidn. Zh.,17, 18 (1955).Google Scholar
  6. 6.
    R. S. Rivlin and D. W. Saunders, Phil. Trans. Roy. Soc.,243, 251 (1951).Google Scholar
  7. 7.
    M. Mooney, J. Appl. Phys.,11, 582 (1940).Google Scholar
  8. 8.
    R. S. Rivlin, J. Phil. Trans. Roy. Soc.,A240, 459 (1948);A241, 379 (1949).Google Scholar
  9. 9.
    A. G. Thomas, Trans. Farad. Soc.,51, 569 (1955).Google Scholar
  10. 10.
    A. N. Gent and A. G. Thomas, J. Polym. Sci.,28, 625 (1958).Google Scholar
  11. 11.
    L. S. Priss, Zh. Tekh. Fiz.,28, 636 (1958).Google Scholar
  12. 12.
    L. R. G. Treloar, Trans. Farad. Soc.,40, 59 (1944).Google Scholar
  13. 13.
    G. M. Bartenev and L. A. Vishnitskaya, Vys. Molek. Soed.,4, 1324 (1962).Google Scholar
  14. 14.
    G. M. Martin, F. L. Roth, and R. D. Stiehler, Trans. IRI,32, 189 (1956).Google Scholar
  15. 15.
    St. Zahorski, Arch. Mech. Stos.,5, No. 6, 613 (1959).Google Scholar
  16. 16.
    G. M. Bartenev, V. P. Nikiforov, B. Kh. Avrushchenko, and A. B Kusov, Kauchuk i Rezina, No. 8, 33 (1970).Google Scholar
  17. 17.
    G. M. Bartenev, V. P. Nikiforov, and B. Kh. Avrushchenko, Plaste u. Kautschuk, No. 17, 37 (1970).Google Scholar
  18. 18.
    M. V. Vol'kenshtein, Yu. Ya. Gotlib, and O. B. Ptitsyn, Vys. Molek. Soed.,1, 1056 (1959).Google Scholar
  19. 19.
    A. Ishihara, N. Hashitsume, and M. Tatibana, J. Chem. Phys.,19, 1508 (1951).Google Scholar
  20. 20.
    A. G. Carmichael and H. W. Holdaway, J. Appl. Phys.,32, 159 (1961).Google Scholar
  21. 21.
    L. J. Hart-Smith, Ztschr. Angew. Math. Phys.,17, 608 (1966).Google Scholar
  22. 22.
    S. Jmai and M. Gordon, J. Chem. Phys.,50, 3889 (1969).Google Scholar
  23. 23.
    H. Alexander, Intern. J. Engng Sci.,6, 549 (1968).Google Scholar
  24. 24.
    A. Love, Treatise on the Mathematical Theory of Elasticity, Dover (1927).Google Scholar
  25. 25.
    S. M. Spivak and L. R. G. Treloar, J. IRI,3, 122 (1969).Google Scholar
  26. 26.
    P. J. Blatz, Rubb. Chem. Technol.,36, 1459 (1963).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • G. M. Bartenev
  • V. P. Nikiforov

There are no affiliations available

Personalised recommendations