Roux's archives of developmental biology

, Volume 181, Issue 1, pp 11–30 | Cite as

Zur Ontogenese des Schalenfeldes vonLymnaea stagnalis

  • Ernst Kniprath

Ontogeny of the shell field inLymnaea stagnalis


  1. 1.

    The development of the adult shell field inLymnaea stagnalis can be followed from its embryonic origin through the shell gland stage. The shell gland represents the most important stage in the differentiation of the entire organ. At no time do the invaginated cells take part in the elaboration of the periostracum. This is solely the function of the rosette, i.e. of the noninvaginated cells. At this stage the shell field is already definitively differentiated into zones.

  2. 2.

    Prior to the shell gland stage, cell division and incorporation of not yet differentiated ectoderm cells are responsible for the growth of the shell field. The shell gland, and later the shell field, grows exclusively by means of mitotic cell division.

  3. 3.

    The formation of the free mantle edge begins when a portion of the elongated edge cells of the shell field arches upward. At the same time and outside of this circular ridge a second ring of undifferentiated ectoderm cells is produced. The two ridges become raised and apposed to one another, thereby creating the periostracal groove between them. They grow jointly from the body of the animal to form the free mantle.

  4. 4.

    One after the other, from the outside to the inside, the zones of the shell gland become functionally active. Accordingly the initial pellicle of the shell takes the form of a ring and consists of membrane-like lamellae. Later it becomes underlain by the other layers of the periostracum (1–3). Since the areas which give rise to the respective layers move away from the shell gland pore during subsequent growth of the shell field, these layers can be absent in the middle of the pellicle. The initial central hole in the shell sometimes becomes occluded only by the innermost shell layers.

  5. 5.

    When secretion begins, the cells are already morphologically differentiated and possess the same appearance as that of their mitotic descendents in the corresponding zones of the mature shell field.

  6. 6.

    The secretion of periostracum material proceeds via elimination of vesicles through the apical cell membrane. Only zone 2 has developed special membrane invaginations for the purpose.

  7. 7.

    In the flat-celled area of the shell field organically bound calcium appears to be transported in the form of granules through the cell interstices.


Key words

Gastropod Ontogeny Shell field Shell secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arni, P.: Licht- und elektronenmikroskopische Untersuchungen an Embryonen vonLymnaea stagnalis L. (Gastropoda, Pulmonata) mit besonderer Berücksichtigung der frühembryonalen Ernährung. Z. Morph. Tiere78, 299–323 (1974)CrossRefGoogle Scholar
  2. Bevelander, G., Nakahara, H.: An electron microscope study of the formation of the periostracum ofMacrocallista maculata. Calc. Tiss. Res.1, 55–67 (1967)CrossRefGoogle Scholar
  3. Bevelander, G., Nakahara, H.: An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calc. Tiss. Res.3, 84–92 (1969)CrossRefGoogle Scholar
  4. Bevelander, G., Nakahara, H.: An electron microscope study of the formation and structure of the periostracum of a gastropod,Littorina littorea. Calc. Tiss. Res.5, 1–12 (1970)CrossRefGoogle Scholar
  5. Biedermann, W.: Untersuchungen über Bau und Entstehung der Molluskenschalen. Jenaische Z. Naturw.36, 1–164 (1901)Google Scholar
  6. Blochmann, F.: Beiträge zur Kenntnis der Entwicklung der Gastropoden. I. Zur Entwicklung vonAplysia limacina L. Z. wiss. Zool.38, 392–410 (1883)Google Scholar
  7. Bubel, A.: An electron-microscope study of periostracum formation in some marine bivalves. I. The origin of the periostracum. Marine Biol.20, 213–221 (1973a)Google Scholar
  8. Bubel, A.: An electron-microscope study of periostracum formation in some marine bivalves. II. The cells lining the periostracal groove. Marine Biol.20, 222–234 (1973b)Google Scholar
  9. Cather, J.N.: Cellular interactions in the development of the shell gland of the gastropod,Ilyanassa. J. exp. Zool.166, 205–224 (1967)CrossRefPubMedGoogle Scholar
  10. Clement, A.C.: Development ofIlyanassa following removal of the D macromere at successive cleavage stages. J. exp. Zool.149, 193–215 (1962)CrossRefGoogle Scholar
  11. Collier, J.R., McCann-Collier, M.: Shell gland formation in theIlyanassa embryo. Exp. Cell Res.34, 512–514 (1964)CrossRefPubMedGoogle Scholar
  12. Fol, H.: Études sur le développement des Mollusques. II. Sur le développement embryonnaire et larvaire des Hétéropodes. Arch. Zool. exp. gén.5, 105–158 (1876)Google Scholar
  13. Fol, H.: Études sur le développement des Mollusques. III. Sur le développement des gastéropodes pulmonés. Arch. Zool. exp. gén.8, 103–232 (1880)Google Scholar
  14. Ganin, M.: Zur Lehre von den Keimblättern bei den Weichtieren. Warschauer Universitätsberichte Nr.1, 115–140 (1873) (russ.); zitiert bei Wolfson, 1880Google Scholar
  15. Ghose, K.C.: Morphogenesis of the shell gland, lung, mantle and mantle cavity of the giant land snail,Achatina fulica. Proc. malac. Soc. London35, 119–126 (1962)Google Scholar
  16. Hayashi, K.: Detection of calcium in molluscan mantles. I.Anodonta andCristaria. Anat. Zool. Jap.17, 95–103 (1938)Google Scholar
  17. Hayashi, K.: Detection of calcium in molluscan mantles. II.Euhadra callizona amaliae Kobelt. Annot. Zool. jap.18, 1–10 (1939)Google Scholar
  18. Hayashi, K.: Detection of calcium in molluscan mantles, III. Smaller freshwater bivalves in Lake Biwa, andAnodonta iwakawai andUnio margaritifera in Hokkaido. Jap. J. Malac.18, 46–49 (1954)Google Scholar
  19. Hess, O.: Die Entwicklung von Halbkeimen bei dem Süßwasser-ProsobranchierBithynia tentaculata. Roux' Arch.148, 336–361 (1956a)CrossRefGoogle Scholar
  20. Hess, O.: Die Entwicklung von Exogastrula-Keimen bei dem Süßwasser-ProsobranchierBithynia tentaculata. Roux' Arch.148, 474–488 (1956b)CrossRefGoogle Scholar
  21. Hess, O.: Die Entwicklung von Halbkeimen beiLimnaea stagnalis. Naturwiss.44, 383 (1957a)CrossRefGoogle Scholar
  22. Hess, O.: Die Entwicklung von Halbkeimen bei dem Süßwasser-PulmonatenLimnaea stagnalis. Roux' Arch.150, 124–145 (1957b)CrossRefGoogle Scholar
  23. Hess, O.: Entwicklungsphysiologie der Mollusken. Fortschr. Zoll.14, 130–163 (1962)Google Scholar
  24. Hess, O.: Fresh water gastropoda. In: G. Reverberi (Ed.), Experimental embryology of marine and fresh-water invertebrates. North-Holland Publ. Co., S. 233–247 (1971)Google Scholar
  25. Horst, R.: De Ontwikkelingsgeschiedenis van de Oester. Embryogénie de l'huitre (Ostrea edulis L.). Tijdschr. ned. Dierk. Ver. Suppl.1, 255–317 (1883)Google Scholar
  26. Ihering, H. von: Über die Ontogenie vonCyclas und die Homologie der Keimblätter bei den Mollusken. Z. wiss. Zool.26, 414–433 (1876)Google Scholar
  27. Kapur, S.P., Gibson, M.A.: A histological study of the development of the mantle-edge and shell in the fresh-water gastropod,Helisoma duryi eudiscus. Can. J. Zool.45, 1169–1181 (1967)CrossRefGoogle Scholar
  28. Kawaguti, S., Ikemoto, N.: Electron microscopy on the mantle of a bivalved gastropod. Biol. J. Okayama Univ.8, 1–20 (1962a)Google Scholar
  29. Kawaguti, S., Ikemoto, N.: Electron microscopy on the mantle of a bivalve,Fabulina nitidula. Biol. J. Okayama Univ.8, 21–30 (1962b)Google Scholar
  30. Kawakami, I.K., Yasuzumi, G.: Electron microscope studies on the mantle of the pearl oysterPinctada martensii Dunker. Prelim. report. The fine structure of the periostracum fixed with permanganate. J. Electr. Micr.13, 119–123 (1964)Google Scholar
  31. Kessel, E.: Über die Schale vonViviparus viviparus undViviparus fasciatus. Z. Morph. Ök. Tiere27, 129–198 (1933)CrossRefGoogle Scholar
  32. Kniprath, E.: Die Feinstruktur der Periostrakumgrube vonLymnaea stagnalis. Biomineralisation2, 23–37 (1970)Google Scholar
  33. Kniprath, E.: Die Feinstruktur des Drüsenpolsters vonLymnaea stagnalis. Biomineralisation3, 1–11 (1971a)Google Scholar
  34. Kniprath, E.: Cytochemische Lokalisation von Kalzium im Mantelepithel vonLymnaea stagnalis (Gastropoda). Histochemie25, 45–51 (1971b)CrossRefPubMedGoogle Scholar
  35. Kniprath, E.: Formation and structure of the periostracum inLymnaea stagnalis. Calc. Tiss. Res.9, 260–271 (1972)CrossRefGoogle Scholar
  36. Kniprath, E.: Das Wachstum des Mantels vonLymnaea stagnalis (Gastropoda). Cytobiol.10, 260–267 (1975)Google Scholar
  37. Kniprath, E.: Die Ontogenese des Schalenfeldes der Mollusken. Abh. Akad. Wiss. Lit. Mainz, (1977a) im Druck, reviewGoogle Scholar
  38. Kniprath, E.: Das Wachstum des Schalenfeldes vonMytilus (Bivalvia). MS (1977b)Google Scholar
  39. Kniprath, E.: Das Wachstum der Plattenfelder vonMiddendorfia (Placophora). MS (1977c)Google Scholar
  40. Kowalevsky, M.A.: Embryologie du Dentale. Ann. Mus. Hist. nat. (Marseille)1, No. 7, 1–54 (1883)Google Scholar
  41. Lillie, F.R.: The embryology of the Unionidae. J. Morph.10, 1–100 (1895)CrossRefGoogle Scholar
  42. Minganti, A., Mancuso, R.: Tyrosinase activity in embryos ofPhysa fontinalis. Acta Embryol. Morph. exp.5, 199–205 (1962) (zit. nach Timmermans, 1969)Google Scholar
  43. Naef, A.: Die Cephalopoden. In: Fauna Flora des Golfes von Neapel,35. Monogr. Bd. 1 (1928)Google Scholar
  44. Nakahara, H., Bevelander, G.: The formation and growth of the prismatic layer ofPinctada radiata. Calc. Tiss. Res.7, 31–45 (1971)CrossRefGoogle Scholar
  45. Neff, J.M.: Ultrastructural studies of periostracum formation, in the hard shelled clamMercenaria mercenaria (L.). Tiss. Cell4, 311–325 (1972a)CrossRefGoogle Scholar
  46. Neff, J.M.: Ultrastructure of the outer epithelium of the mantle in the clamMercenaria mercenaria in relation to calcification of the shell. Tiss. Cell4, 591–600 (1972b)CrossRefGoogle Scholar
  47. Numanoi, H.: Distribution of calcium in the soft part of the freshwater bivalveCristaria plicata. Jap. J. Zool.8, 353–356 (1939)Google Scholar
  48. Otto, H., Tönniges, C.: Untersuchungen über die Entwicklung vonPaludina vivipara. Z. wiss. Zool.80, 411–514 (1906)Google Scholar
  49. Raven, C.P.: Morphogenesis inLymnaea stagnalis and its disturbance by Lithium. J. exp. Zool.121, 1–72 (1952a)CrossRefGoogle Scholar
  50. Raven, C.P.: Lithium as a tool in the analysis of morphogenesis inLymnaea stagnalis. Experientia8, 252–257 (1952b)CrossRefPubMedGoogle Scholar
  51. Ray Lankester, E.: Summary of the zoological observations made in Naples in the winter of 1871/72. Ann. Mag. Nat. Hist., Ser. 4,11, 81–87 (1873)Google Scholar
  52. Ray Lankester, E.: Contributions to the developmental history of the mollusca. Phil. Trans. roy Soc. London165, 1–48 (1875)CrossRefGoogle Scholar
  53. Réaumur, R.: De la formation et de l'accroissement des coquilles des animaux tant terrestres qu' aquatiques, soit de mer, soit de rivière. Hist. Acad. roy, Sci. Mem. Paris, 364–400 (1709)Google Scholar
  54. Salensky, W.: Beiträge zur Entwicklung der Prosobranchier. Z. wiss. Zool.22, 428–454 (1872)Google Scholar
  55. Saleuddin, A.S.M.: An electron microscopic study of the transformation and structure of the periostracum inAstarte (Bivalvia). Can. J. Zool.52, 1463–1471 (1974)CrossRefGoogle Scholar
  56. Saleuddin, A.S.M.: An electron microscopic study on the formation of the periostracum inHelisoma (Mollusca). Calc. Tiss. Res.18, 297–310 (1975)CrossRefGoogle Scholar
  57. Sarasin, P.B.: Entwicklungsgeschichte vonBithynia tentaculata. Arb. Zool. Inst. Würzburg6, 1–68 (1883)Google Scholar
  58. Schmidt, F.: Beiträge zur Kenntnis der Entwicklungsgeschichte der Stylommatophoren. Zool. Jahrb. (Anat.-Ont.)8, 318–341 (1895)Google Scholar
  59. Stempell, W.: Über die Bildungsweise und das Wachstum der Muschel- und Schneckenschalen. Biol. Zentralbl.20, 595–606, 637–644, 665–680, 698–703, 731–741 (1900)Google Scholar
  60. Stepanoff, P.: Über die Geschlechtsorgane und die Entwicklung vonCyclas. Arch. Naturgesch.31, 1–32 (1865)Google Scholar
  61. Tardy, J.: Contribution a l'étude des metamorphoses chez les nudibranches. Ann. Sci. nat. Zool. (Paris)12, 299–370 (1970)Google Scholar
  62. Timmermans, L.P.M.: Studies on shell formation in molluscs. Netherlands. J. Zool.19, 417–523 (1969)Google Scholar
  63. Wada, K.: Electron microscopic observations of the formation of the periostracum ofPinctada fucata. Bull. nation. Pearl Res. Lab.13, 1541–1560 (1968)Google Scholar
  64. Wolfson, W.: Die embryonale Entwicklung desLymnaeus stagnalis. Bull. Acad. Imp. Sci. St. Petersbourg26, 79–98 (1880)Google Scholar
  65. Ziegler, E.: Die Entwicklung vonCyclas cornea Lam. Z. Wiss. Zool.41, 525–569 (1885)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Ernst Kniprath
    • 1
  1. 1.Lehrstuhl für Zellmorphologie der Ruhr-Universität BochumBochum

Personalised recommendations