Polymer Mechanics

, Volume 5, Issue 4, pp 501–505 | Cite as

Temperature reversal of the reinforcing effect of fillers

  • V. G. Raevskii
  • M. N. Tolmacheva
  • V. E. Gul'


A previous investigation [4] of the tear strength of filled systems based on SKS-85 butadiene-styrene copolymer over a broad temperature interval revealed a reversal of the reinforcing effect of fillers with a coefficient of thermal expansion different from that of the filled polymer. At T<Tg the strength of mixtures containing polymer fillers [Kapron (polycaprolactam) and cellophane powder] exceeds that of mixtures containing chalk and carbon black. The temperature reversal effect is attributed to the severe weakening of the adhesion of the polymer to the surface of the filler particles as a result of the concentration of shrinkage stresses in the polymer-filler contact zone. The presence of shrinkage stresses around the filler particles at T<Tg is qualitatively demonstrated on model systems using a photoelastic technique. Moreover, it is shown that the unbalance, and hence the residual stresses, in filled systems at temperatures below the glass transition temperature of the filled polymer is determined by the difference in the coefficients of thermal expansion.


Polymer Residual Stress Thermal Expansion Kapron Glass Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. E. Gul', Strength of Polymers [in Russian], Moscow (1964), p. 204.Google Scholar
  2. 2.
    M. N. Tolmacheva, V. E. Gul', and B. A. Dogadkin, Kolloidn. Zh.,27, 524 (1965).Google Scholar
  3. 3.
    V. E. Gul', Eighth Mend. Conf. on General and Appl. Chemistry. Polymer Chemistry and Technology [in Russian], Izd-vo AN SSSR (1959), p. 91; V. E. Gul', in: Polymers [in Russian], Moscow (1965), p. 223; V. E. Gul', L. N. Tsarskii, and S. A. Vil'nits, Kolloidn. Zh.,20, 318 (1958).Google Scholar
  4. 4.
    V. G. Raevskii, M. N. Tolmacheva, and L. V. Makarskaya, Mekhan. Polim., No. 6, 98 (1965).Google Scholar
  5. 5.
    V. P. Solomko and L. S. Semko, Mekhan. Polim., No. 3, 517 (1967).Google Scholar
  6. 6.
    W. M. Brite, Symp. Adhesion and Adhesives (1954), p. 130.Google Scholar
  7. 7.
    S. S. Voyutskii, Yu. I. Markin, V. M. Gorchakova, and V. E. Gul', Zh. Fiz. Khim.,37, 2027 (1963).Google Scholar
  8. 8.
    G. M. Bartenev and A. I. El'kin, VMS,7, 992 (1965).Google Scholar
  9. 9.
    S. S. Voyutskii, V. G. Raevskii, and S. M. Yagnyatinskaya, Kauchuk i Rezina, No. 7, 16 (1964).Google Scholar
  10. 10.
    V. G. Raeveskii, M. N. Tolmacheva, and L. V. Makarskaya, Mekhan. Polim., No. 5, 71 (1965).Google Scholar
  11. 11.
    I. F. Kaimin', Plast. Massy, No. 9, 37 (1965).Google Scholar
  12. 12.
    V. G. Raevskii and M. N. Tolmacheva, Mekhan. Polim., No. 4, 100 (1965).Google Scholar
  13. 13.
    V. G. Raevskii, M. N. Tolmacheva, and V. E. Gul', Dokl. Akad. Nauk SSSR,177, No. 4, 883 (1968).Google Scholar
  14. 14.
    Z. N. Ray and R. E. Felter, Amer. Chem. Soc. Polymer Prepr.,6, No. 2, 823 (1965).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • V. G. Raevskii
  • M. N. Tolmacheva
  • V. E. Gul'

There are no affiliations available

Personalised recommendations